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Abstract: This report describes a particle tracking computer program 
named PT123.  The development of PT123 was supported in part by the 
Civil Works Basic Research project entitled “Efficient Resolution of 
Complex Transport Phenomena Using Eulerian-Lagrangian Techniques” 
and in part by the System-Wide Water Resources Program (SWWRP). 
Given velocities, PT123 can track massless particles in 1-, 2-, and 3-D 
unstructured or converted structured meshes. The elements used to con-
struct PT123 meshes are line elements in 1-D, triangular and/or quadri-
lateral elements in 2-D, and tetrahedral, triangular prism, and/or hexa-
hedral elements in 3-D. One adaptive (embedded 4th- and 5th-order) and 
three non-adaptive (1st-, 2nd-, and 4th-order) Runge-Kutta (RK) methods 
are included in PT123 to solve the ordinary differential equations describ-
ing the motion of particles. The adaptive RK method allows the user to 
control tracking accuracy with specified error tolerances. The non-
adaptive RK methods provide the user options to balance computational 
efficiency and accuracy by using lower order schemes for smooth velocity 
fields and higher order schemes for complex velocity fields. Both element-
by-element (EBE) and non-element-by-element (NEBE) tracking 
approaches are incorporated into PT123. Both node- and element-based 
velocity can be used for particle tracking. PT123 can execute forward and 
backward tracking and output tracking history at a specified frequency. It 
tracks particles along the closed boundary and stops tracking when a 
particle encounters the open boundary through which particles enter or 
exit the computational domain. The start and end times of tracking are 
flexible as long as their corresponding velocities can be computed via 
temporal interpolation using the given velocities. This report is the first 
report of the series describing the development and application of PT123. 
It details the governing equation and numerical approaching associated 
with PT123 Version 1.0. Six test examples in multiple dimensions are used 
for verification and demonstration. The structure and the input guide of 
the computer program are given in the appendices. 

 

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes. 
Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. 
All product names and trademarks cited are the property of their respective owners. The findings of this report are not to 
be construed as an official Department of the Army position unless so designated by other authorized documents. 
 
DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR. 
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1 Introduction 

The particle tracking (PT) technique has a wide range of application in 
environmental sciences and engineering. This technique typically uses the 
output from hydrodynamic and/or advection-diffusion models to predict 
particle movements in a Lagrangian manner. Given the velocity field, PT 
can provide a quick estimate of how a chemical migrates in complex sur-
face water and groundwater systems. It can be used to understand, 
visualize, and analyze flow fields (Pokrajac and Lazic 2002). It can be used 
to study sediment transport (MacDonald et al. 2006), oil spill (Liu et al. 
2011), and natural or man-induced retardation mechanisms that may be 
used for the remediation or prevention of environmental pollution. It can 
be used to understand and predict fish behavior (Goodwin et al. 2006) for 
ecosystem restoration and preservation. It can also be applied in the 
Eulerian-Lagrangian (EL) approximation to solve transport equations 
numerically, which is a crucial modeling practice to help deal with envi-
ronmental issues concerning water quality. The quality of particle tracking 
dictates much of the accuracy of the whole EL approximation (Russell and 
Celia 2002) as well as efficiency on serial and parallel platforms (Cheng 
and Plassman 2004). Efficient numerical methods for transport are neces-
sary for large-scale modeling in achieving the Corps’ mission. Therefore, 
having accurate and efficient PT can help the Corps’ engineers and scien-
tists to carry out reimbursable and research and development (R&D) 
projects. These methods have been implemented in a computer model 
called PT123. 

1.1 Purposes of PT123 research study 

The purposes of PT123 research are two-fold. One is to construct accurate 
and efficient PT computer routines for solving multi-dimensional trans-
port problem using the Eulerian-Lagrangian localized adjoint methods 
(ELLAM) numerical method (Russell and Celia 2002), as proposed in the 
Civil Works Basic Research project entitled “Efficient Resolution of 
Complex Transport Phenomena Using Eulerian-Lagrangian Techniques.” 
The other is to develop a library-type computer program which can be 
incorporated easily into or linked to ERDC’s existing flow or transport 
models (e.g., adaptive hydraulics model (ADH), particle tracking model 
(PTM)) to enhance computational accuracy and efficiency in various 
applications. 



ERDC TR-11-10 2 

 

1.2 Modeling approach 

The velocity field dictates the PT result. Inaccuracies in velocity values 
introduce an error into PT. Spatial interpolation of velocities introduces 
another error into PT because the exact velocity field differs from the 
interpolated field even if the nodal velocities are exact (Pokrajac and Lazic 
2002).  

Analytical PT solutions are limited to the cases with simple geometry and 
velocity fields. Semi-analytical PT is used in the Pollock’s method, where 
linear interpolation of velocity enables the analytical calculation of path 
lines and travel times over an element (Pollock 1988). The standard 
numerical methods used are the 1st-order Euler, the 2nd-order Euler 
predictor-corrector, or higher-order Runge-Kutta (RK) methods. For 
convenience, RK1 and RK2 are used to represent the 1st- and 2nd-order 
methods (Press et al. 1992). The previous studies showed that higher-
order RK methods, e.g., 4st-order RK or RK4, are superior to the lower-
order RK methods regarding accuracy, and adaptive spatial or temporal 
steps improve significantly the efficiency of PT algorithms in velocity fields 
containing wide spectrums of velocity magnitude and element size (Cash 
1989; Press et al. 1992; Bensabat et al. 1998; Oliveira and Baptista 1998); 
Cheng and Plassman 2004. 

By assuming that the given velocity field is accurate and the velocity inter-
polation error is negligible, the PT123 implementation focuses primarily 
on the techniques for solving the ordinary differential equations (ODEs) 
that describe the motion of particles along their path lines. The PT123 
computer program presented in this document is the result of the initial 
effort of PT123 basic R&D, resulting in a stand-alone computer code. The 
next planned research tasks for PT123 include  

1. parallelization;  
2. GUI development;  
3. library format;  
4. incorporation of mechanisms/processes that modify tracking 

velocities; 
5. conversion of finite difference or finite volume model data into PT123 

format.  
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Refined and tested computational algorithms of PT123 will be ported into 
ERDC’s in-house models, e.g., ADH (ADH 2010) and PTM (MacDonald 
et al. 2006). A summary of PT123 computational strategy and feature and 
model input/output (I/O) follows next. 

1.3 Computational strategy and features 

PT123 employs the following techniques in its computation: 

1. Perform PT on either an element-by-element (EBE) or a non-element-
by-element (NEBE) basis. 

2. Use both absolute tolerance (ATOL) and relative tolerance (RTOL) to 
control accuracy in time integration when adaptive RK is used. 

3. Use interpolation to estimate the derivative term, i.e., velocity, during 
the RK process. The interpolation is linear in time and consistent with 
element shape function in space. 

With the strategy implemented, the current version (1.0) of PT123 includes 
the following computational features: 

1. PT in multiple dimensions: 1-, 2-, or 3-D. 
2. Flexible time and length units: any time and length units are valid if 

consistent. 
3. Different RK schemes:  

a. One adaptive: embedded 4th- and 5th-order (RK45).  
b. Three non-adaptive: 1st-order (RK1), 2nd-order (RK2), and 

4th-order (RK4) schemes can be used at the user’s choice.  
4. Forward or backward PT: the user specifies in the input data whether 

forward or backward PT is to be performed.  
5. Multiple particles: there is no constraint on the number of tracked par-

ticles; the user specifies the number and the locations of the tracked 
particles in the input data. 

6. Steady or transient velocity fields: the user specifies whether a steady 
or transient velocity is to be applied for PT. 

7. Node- or element-based velocity: when node-based velocity is used, 
only one velocity is assigned to a global node at a time; when element-
based velocity is used, the velocity at a node may change with the 
element involving that node due to heterogeneity or other reasons. 

8. Velocity conversion factor: each node or each element is assigned a 
velocity conversion factor to allow the conversion from the given flow 
velocity to the tracking velocity, e.g., from the given Darcy velocity to 
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the pore velocity for tracking. This feature offers the flexibility of using 
various tracking velocities for particles of different kinds, e.g., sedi-
ments of different sizes, in the same flow field. 

9. Courant number to control PT time step size: a user-specified Courant 
number value can be used to compute the PT time step size using the 
tracking velocities and the characteristic length associated with the 
element that contains the particle being tracked.  

10. Flexible start time and time duration for tracking: the time parameters 
can be assigned any values in the range that the given velocity field 
covers. 

11. Various types of element shapes: PT123 can compute PT within 
unstructured meshes composed of line elements in 1-D, triangular and 
quadrilateral elements in 2-D, and tetrahedral, triangular prism, and 
hexahedral elements in 3-D domains. 

1.4 Input and output 

PT123 does not require any specification of time and length units in the 
input file. Any combination of time and length units can be utilized in PT 
computation as long as consistency is maintained throughout the input 
data. The output assumes the same time and length units implied in the 
input data. 

The input data that PT123 requires for PT computation includes  

1. element indices and nodal coordinates (i.e., geometry of the 
computational domain);  

2. velocities (e.g., flow fields from hydrodynamic models);  
3. velocity conversion factors;  
4. open/closed boundary information; 
5. specifics for PT computation (e.g., particle data, computation 

parameters, etc.).  

PT123 uses several input files to accommodate its input data. The details 
of the PT123 input files are given in Appendix B. 

PT123 outputs the trajectory of each tracked particle from the start time 
through the time duration, i.e., time versus location for each particle, at a 
desired frequency. For example, if a particle is tracked for a time duration 
of 30,000 sec and the user wants to trace the locations of the tracked 
particle every 100 sec, then the trajectory will include 301 points, where 
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301 is equal to (30,000/100)+1. PT123 stores the PT output in ASCII and 
BINARY format for inspection and post-processing, respectively. 

The remainder of the report provides details of the information summa-
rized so far. The mathematical statements and numerical solutions are 
stated in Chapter 2. Six test examples are given in Chapter 3 for both 
verification and demonstration purposes. Final remarks on the develop-
ment of PT123 and an outline of tasks for future advancements are given 
in Chapter 4. The program structure and subroutine description are pro-
vide in Appendix A. The input guide is given in Appendix B. The output 
files are described in Appendix C. 
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2 Governing Equations and Numerical 
Solutions 

2.1 Governing equation 

In PT123, the following ODE in vector form is solved for defining the 
particle path. 

 ( , )
d

t
dt


x

V x  (1) 

where: 

 d = Courant number 
  = location of a tracked particle [L]  
 t = time [t] 
  = tracking velocity [L/t]. 

Given the initial location of a particle, i.e., x(t0), one can compute the 
particle path through time integration over the specified velocities, as 
shown in Equation 2. 

 ( ) ( ) ( , )
t

t

t t t dt  
0

0x x V x  (2) 

where:  

 t0 = start time for PT [t]  
 't  = a dummy variable used for time integration. 

2.2 Time integration 

PT123 includes an adaptive time integration algorithm, where the differ-
ence from embedded 4th- and 5th-order RK results is employed for error 
estimation. The estimated error is compared to the prescribed error 
tolerances to adjust the time step size for time integration in the PT com-
putation. PT123 also provides options of using 1st-, 2nd-, or 4th-order RK 
for computation, where the user provides a specified time step size, i.e., 

 

x

 

V
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the DT_INIT0 parameter in the PT Specifics file, in Appendix B. The com-
puted particle trajectory is composed of many tracking segments, and each 
segment is associated with a successful RK computation. 

2.2.1 Adaptive RK schemes 

With RK45, we first compute ki (i = 1 to 6) as defined as in Equation 3, 
where ki is a vector of a size equal to the dimension of the PT spatial 
domain, i.e., 1 for 1-D, 2 for 2-D, and 3 for 3-D. Table 1 lists the values of 
coefficients ai, bij, ci, and ci* used in RK45 as shown below (Press et al. 
1992). 

Table 1. Cash-Karp coefficients for the embedded 4th- and 5th-order RK (from Press et al. 1992). 

i ai bij ci ci* 

1 0        0      0       0          0      0    37/387    2825/27648 

2 1/5        1/5      0       0          0      0      0          0 

3 3/10        3/40      9/40       0          0      0 250/621 18575/48384 

4 3/5        3/10     -9/10       6/5          0      0 125/594 13525/55296 

5 1     -11/54      5/2   -70/27         35/27      0      0     277/14336 

6 7/8 1631/55296 175/512 575/13824 44275/110592 253/4096 512/1771         1/4 

j = 1 2 3 4 5  

 

 

Δ ( , )
Δ ( , Δ )
Δ ( , Δ )
Δ ( , Δ )
Δ ( , Δ )
Δ ( , Δ )

n

n

n

n

n

n

t t

t b t a t

t b b t a t

t b b b t a t

t b b b b t a t

t b b b b b t a t

 

   

    

     

      

       

1

2 21 1 2

3 31 1 32 2 3

4 41 1 42 2 43 3 4

5 51 1 52 2 53 3 54 4 5

6 61 1 62 2 63 3 64 4 65 5 6

n

n

n

n

n

n

k V x

k V x k

k V x k k

k V x k k k

k V x k k k k

k V x k k k k k

 (3) 

where:  

 Δt  = step size for time integration 
 xn = start location. 

Therefore, the embedded 5th-order RK yields 

 (Δ )c c c c c c t         6
1 1 1 2 2 3 3 4 4 5 5 6 6 0n nx x k k k k k k  (4) 
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While the embedded 4th-order results in 

 * * * * * * * (Δ )c c c c c c t         5
1 1 1 2 2 3 3 4 4 5 5 6 6 0n nx x k k k k k k  (5) 

where:  

 1nx  = estimated end location using the embedded 5th-order RK  
 *

1nx  = estimated end location using the embedded 4th-order RK. 

2.2.2 Error estimate 

Using RK45, the integration error can be estimated using Equation 6. 

 *Δ   1 1n nx x  (6) 

where: 

  =  estimated error of time integration. 

2.2.3 Adaption of time step size 

Equation 7 is used to compare the estimated error with prescribed error 
tolerances for the adaption of time step size.  

 
 *

, , , ,

Δ

max ,
j

j

j j j j

δ
ATOL RTOL  


   1 1n n n nx x x x

  (7) 

where: 

 δj = the ratio of the estimated error to the prescribed error 
tolerance in the j-th spatial direction 

 ATOL = prescribed absolute error tolerance [L] 
 RTOL = prescribed relative error tolerance [dimensionless] 
 , jnx 1  = j-th component of 1nx . 

Here ATOL represents the allowed estimated error of time integration for 
each tracking segment in an absolute sense. On the other hand, RTOL is 
the allowed error portion when compared to the length of the tracking 
segment being calculated. The combination of the two, as described in the 

 

∆
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denominator on the right-hand side of Equation 7, defines the allowed 
error tolerance for each tracking segment. The user chooses ATOL and 
RTOL based on the requirement of accuracy for his/her application. 

We now define a ratio as 

 
 max jj

R
δ


1

 (8) 

and use R in determining an appropriate time step size for PT compu-
tation. Two possibilities exist: 

When R < 1: 

When R is smaller than 1, the estimated error exceeds the allowed error 
tolerance, i.e., Equation 7. In this case, the time step size is reduced using 
the following equation: 

 * .Δ Δt t SF R   0 25  (9) 

where:  

 *Δt  = adapted PT time step size 
 SF = safety factor used in adaption.  

When R ≥ 1: 

When R is greater than or equal to 1, the estimated error is smaller than or 
equal to the allowed error tolerance. In this case, the time step size for the 
current PT computation is small enough to meet the required accuracy, 
and the time step size can be increased for the successive particle tracking 
computation. This increased time step size is computed using the follow-
ing equation: 

 * .Δ Δt t SF R   0 2  (10) 

2.3 Interpolation of velocity 

The given velocity field can vary in both time and space. While the ana-
lytical velocity is not available in complex real-world systems, interpola-
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tion becomes essential to estimate velocity at various times and locations 
in the PT computation. PT123 conducts a linear temporal interpolation 
and the following spatial interpolation schemes, depending on the shape of 
the active element, for its velocity computation: 

1. Linear for 1-D line, 2-D triangular, and 3-D tetrahedral elements 
2. Bi-linear for 2-D quadrilateral elements 
3. tri-linear for 3-D hexahedral elements 
4. Combined linear/bi-linear for 3-D triangular prism elements. 

2.4 Element-by-Element (EBE) tracking 

PT123 can conduct PT on an EBE basis (Cheng et al. 1996), where each 
tracking segment computed using the designated RK scheme is within an 
element. Figure 1 presents this EBE tracking concept. 

 
Figure 1. Element-by-Element (EBE) particle tracking diagram. 

As shown in Figure 1, PT123 reads domain geometry, velocity, and neces-
sary information for particle tracking. It uses the information of domain 
geometry to prepare node-element connectivity, where the elements con-
necting at each global node are identified and stored. To track a particle, 
PT123 first locates the element where the particle has entered. This 
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element is called the active element. Then it conducts PT computation 
within this active element using the designated RK scheme (if the particle 
is on an interface between elements, all elements owning this particle are 
potential active elements and will be examined one by one until a suc-
cessful PT computation is performed).  

PT123 uses the user-specified initial time step size for the first PT com-
putation within the active element. It can also compute a Courant number-
based time step size for the first PT computation in the active element by 
using the CR parameter value specified in the PT Specific File (Appen-
dix B). This Courant number-based time step size depends on both the size 
and velocities associated with the active element. Suppose L represents the 
characteristic length of the active element which has N element nodes; 
Vi(t1) and Vi(t2) represent the velocity associated with times t1 and t2, 
respectively at the i-th element node, where t1 and t2 are two consecutive 
time steps; and the L is the length of a 1-D element, the square root of the 
area of a 2-D element, and the cube root of the volume of a 3-D element. 
Then the Courant number-based time step size is computed using 
Equation 11. 

 Δ Courant
avg

L
t CR

V
   (11) 

where: 

 CR = name of the Courant number parameter 
 avgV  = average element velocity, which can be computed using 

 
( ) ( )

N N

i i
avg

t t
V

N
 






 1 2
1 1

2

i iV V
  (12) 

PT123 prevents Δ Courantt  from becoming too large by restricting Vavg to a 

minimum value of 10-10. 

Reduction of time step size at the element boundary 

If the time step size used is too large such that the particle will go outside 
the active element, the time step size will be reduced so that the particle 
would reach the boundary of the active element. This reduction of time 
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step size is enforced in the EBE tracking even if a non-adaptive RK scheme 
is employed. Figure 2 demonstrates how this reduction of tracking time 
step size is achieved in PT123. 

 
Figure 2. Plot to demonstrate how PT time step 

size is reduced when the end location 
is outside of the active element. 

In Figure 2, points S and E represent the start and the end locations of a 
PT computation associated with the active element M, and point I is the 
intercept of segment SE and the element boundary. If the PT time step size 
from point S to point E is Δtold, then the new PT time step size to prevent 
the particle from going outside the element is estimated using the 
following equation: 

 SI

SE

Δ Δnew old

l
t t

l
   (13) 

where: 

 Δ newt  = new PT time step 

 SIl  = distance between points S and I 

 SEl  = distance between points S and E. 

It is noted that this linear reduction of PT time step size (i.e., Equation 13) 
will get the particle to point E if RK1 is used. When higher-order RK 
schemes are used, it would require an iteration process to stop the particle 
on the element boundary. To help stop the particle on the boundary of the 
active element without spending too computation in the iteration process, 
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PT123 employs a narrow buffer zone surrounding the element boundary. 
When the end location of a PT computation is within the buffer zone, it is 
considered on the element boundary and this end location is adjusted to 
assure that the particle is right on the element boundary for the subse-
quent PT. This narrow buffer zone is small when compared to the size of 
the active element. This buffer zone is defined using the parameter 
DN_SAFE specified in the PT123 Super File (Appendix B) and the absolute 
error tolerance, i.e., ATOL, mentioned in Equation 7. For example, if a 
tracked particle is to exit the active element M via the boundary side 2–3 
as shown in Figure 2, the interpolation factor associated with element 
node 1, say DN1, at the exit location will be zero. During PT computation, 
when DN1 at the end location is computed between (0 - DN_SAFE1) and 
(0 + DN_SAFE1), PT123 considers this particle reaching the element 
boundary. And then PT123 sets DN1 to zero and adjusts the interpolation 
factors associated with nodes 2 and 3, i.e., DN2 and DN3, accordingly to 
move the particle slightly onto the element boundary. The buffer zone 
parameter DN_SAFE1 is defined as follows.  

 _ _
ATOL

DN SAFE DN SAFE
L


 

101  (14) 

where L is the characteristic length of the active element M, as mentioned 
before in Equation 11.  

Both the end location and the available tracking time are examined after 
each successful PT segment is computed. If the end location is still within 
the active element and the available tracking time is not zero, successive 
PT computations are conducted until either the tracking time is completely 
consumed or the particle reaches the boundary of the active element.  

The cumulative tracking of a particle is considered complete when either 
the available tracking time becomes zero or the particle exits from an open 
boundary before tracking time is consumed completely. An open boundary 
is a boundary through which particles are permitted to enter or leave the 
domain of interest. When the particle reaches the boundary of the active 
element that is not an open boundary and the available tracking time is 
not zero, tracking will continue on. In this case, all active element candi-
dates are tested one by one until a successful tracking is conducted as 
mentioned before. This thus forms the EBE-based tracking as highlighted 
with the yellow shade in Figure 1. 
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2.5 Non-Element-by-Element (NEBE) tracking 

PT123 can also conduct PT on a NEBE basis, where each tracking segment 
computed may be across elements. The NEBE-based tracking in PT123 
uses the designated RK scheme to compute the estimated end location, 
i.e., xn+1, and a ray search algorithm to locate the element that includes 
xn+1. This process continues until PT calculations are completed over the 
entire computational domain. The PT time step size will be reduced when-
ever the particle encounters the domain boundary. Figure 3 depicts the 
computational flow chart using the NEBE-based PT. 

 
Figure 3. Non-Element-by-Element (NEBE) particle tracking diagram. 

As shown on the upper left of the green-shade area in Figure 3, the PT 
time step size is to be reduced if the particle would go outside of the 
domain of interest, where no velocity field is available. The computation of 
the reduced time step is given as follows when various RK schemes are 
used. 
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2.5.1 When using RK1 for NEBE-based PT: 

The estimated end location can be computed using 

 Δ ( , ) (Δ )nt t O t     2
1 0 0n n nx x V x   (15) 

If the estimated end location, i.e., xn+1, is outside of the domain of interest, 
and the line segment connecting xn and xn+1 intersects with the domain 
boundary at xB, then the reduced PT time step size is computed as 

 Δ Δ Bt t



 

1 0
1

n

n n

x x

x x
 (16) 

where: 

 Δt1  = new PT time step after reduction. 

2.5.2 When using RK2 for NEBE-based PT: 

The estimated end location can be computed using 

 

Δ ( , )

Δ ( , Δ )

(Δ )

n

n

t t

t t t

t

 

   

  

k

1

2 1

3
1 2

1 1
2 2

0

n

n

n n

k V x

k V x

x x k

 (17) 

There are two situations where the time step size reduction may be needed 
during the RK2 computation. The first instance occurs when the computed 
xn + (k1/2) is outside of the domain of interest, and the line segment con-
necting xn and xn + (k1/2) intersects with the domain boundary at xB1. In 
this case, the PT time step size is reduced using 

 Δ Δ Bt t


  1
1 0

1 2
nx x

k
 (18) 

When xn + (k1/2) is within the domain, k2 can be estimated. In the second 
case, if the estimated end location, i.e., xn+1, is outside of the domain of 
interest, and the line segment connecting xn and xn+1 intersects with the 
domain boundary at xB2, then the PT time step size is reduced using  
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n

Δ Δ Bt t



 


2

1 0
1

n

n

x x

x x
 (19) 

2.5.3 When using RK4 for NEBE-based PT: 

The estimated end location can be computed using 

 

Δ ( , )

Δ ( , Δ )

Δ ( , Δ )

Δ ( , Δ )

(Δ )

n

n

n

n

t t

t t t

t t t

t t t

t

 

   

   

   

     1

1

2 1

3 2

4 3

5
1 2 3 4

1 1
2 2
1 1
2 2

1 1 1 1 0
6 3 3 6

n

n

n

n

n n

k V x

k V x k

k V x k

k V x k

x x k k k k

 (20) 

There are four possible situations for the reduction of PT time step size 
during the RK4 computation. These four conditions are described next. 

Situations 1-2: the computed xn + (ki/2) (i = 1, 2) is outside of the 
domain of interest, and the line segment connecting xn and xn + (ki/2) 
intersects with the domain boundary at xBi. In this case, the PT time step 
size is reduced using 

 Δ Δ Bi

i

t t


 1 0 2
nx x

k
 (21) 

Situation 3: the computed xn + k3 is outside of the domain of interest, 
and the line segment connecting xn and xn + k3 intersects with the domain 
boundary at xB3. In this case, the PT time step size is reduced using 

 Δ Δ Bt t


  3
1 0

3

nx x

k
 (22) 

Situation 4: the estimated end location, i.e., xn+1, is outside of the 
domain of interest, and the line segment connecting xn and xn+1 intersects 
with the domain boundary at xB4. Here the PT time step size is reduced 
using  
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 Δ Δ Bt t



 


4

1 0
1

n

n n

x x

x x
 (23) 

2.5.4 When using RK45 for NEBE-based PT: 

The estimated end location can be computed using 

 

Δ ( , )
Δ ( , Δ )
Δ ( , Δ )
Δ ( , Δ )
Δ ( , Δ )
Δ ( , Δ )

n

n

n

n

n

n

t t

t b t a t

t b b t a t

t b b b t a t

t b b b b t a t

t b b b b b t a t

 

   

    
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 (24) 

There are seven possible situations for the reduction of PT time step size 
during the RK45 computation. These seven situations are described as 
follows. 

Situations 1-5: the computed 
i

kj j
j

b



1

nx k  (k = j+1, i = 1, 2, 3, 4, 5) is 

outside of the domain of interest, and the line segment connecting xn and 
i

kj j
j

b



1

nx k  intersects with the domain boundary at xBi. In this case, the 

PT time step size is reduced using 

 Δ Δ Bi

i

kj j
j

t t

b



 


1 0

1

nx x

k

 (25) 

Situation 6: the computed xn+1 is outside of the domain of interest, and 
the line segment connecting xn and xn+1 intersects with the domain boun-
dary at xB6. Here the PT time step size is reduced using  

 Δ Δ Bt t



 


6

1 0
1

n

n n

x x

x x
 (26) 
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Situation 7: the computed *
1nx  is outside of the domain of interest, and 

the line segment connecting xn and *
1nx  intersects with the domain boun-

dary at xB7. In this case, the PT time step size is reduced using  

 
*

Δ Δ Bt t



 


7

1 0
1

n

n n

x x

x x
 (27) 

When the reduction of PT time step size happens, Δt0  is updated with Δt1

to compute xn+1 using the specified RK scheme. Also, the same examina-
tion of whether the PT time step size needs to be further reduced is con-
ducted. This process continues until the computed xn+1 is within the 
domain. 

2.6 Tracking along a closed boundary 

An open boundary is a boundary through which a particle can enter or exit 
the domain of interest. A boundary is a closed boundary if it is not an open 
boundary. Conceptually, the flow velocity associated with a closed boun-
dary is parallel or tangential to the boundary, i.e., zero normal velocity at 
the closed boundary. However, both mesh resolution and numerical error 
can contribute to non-tangent flow velocity at the closed boundary. This is 
common in the simulations of real-world problems. As a result, the com-
puted PT results can become misleading if the PT computation does not 
proceed when the tracked particle reaches a closed boundary.  

PT123 uses the projected velocity on the closed boundary to continue PT 
computation until the tracked particle reaches an open boundary or when 
the tracking time is completely consumed. The computation of projected 
velocity on the closed boundary is described next. 

2.6.1 Velocity projection onto a 2-D boundary edge 

As shown in Figure 4, the computed velocity at node 1 is V1, which is non-
parallel to the closed boundary edge between nodes 1 and 2. The geometric 
quantities associated with edge 1-2 for PT123 computations include: 
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Figure 4. Projection of velocity onto a 2-D boundary segment. 

1. The length of edge 1-2 (l12): 

    Δ Δl x y 
2 2

12   (28) 

 where: 

 Δx  =  x2 – x1 
 Δy  =  y2 – y1 
 (x1, y1) = coordinates of node 1 
 (x2, y2) = coordinates of node 2. 

2. The unit vector parallel to edge 1-2, u, is 

 Δ Δ
,

x y
l l

     12 12

u  (29) 

3. The projected magnitude of V1 onto edge 1-2 can be computed as  

  V1p V1 u  (30) 

 where: 

 V1p  = projected velocity of V1 onto edge 1-2. 

 Then the projected velocity of V1 onto edge 1-2, i.e., V1p, is computed 
as 
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   Δ Δ Δ Δ
,

x y x y
Vx Vy

l l l l

                  12 12 12 12

1 1V1p V1p u V1 u u  (31) 

 where: 

 ,Vx Vy1 1 = x- and y-components of V1. 

2.6.2 Velocity projection onto a 3-D boundary face 

Figure 5 shows the geometric relationship of the velocity at node 1, i.e., V1, 
and a 3-D triangular boundary face 1-2-3. The equation describing the 
plan containing face 1-2-3 can be represented by ax + by + cz + d = 0, 
where the normal vector of the plane is (a, b, c). 

 
Figure 5. Projection of velocity onto a 3-D boundary face. 

The normal vector of the plane, n, can be computed using Equation 32 as 

    ( , , )Δ ,Δ ,Δ Δ ,Δ ,Δa b c x y z x y z    12 12 12 13 13 1312 13n L L   (32) 

where: 

 a = 
Δ Δ
Δ Δ

y z

y z
12 12

13 13

 

 b = 
Δ Δ
Δ Δ

z x

z x
12 12

13 13

 



ERDC TR-11-10 21 

 

 c = 
Δ Δ
Δ Δ

x y

x y
12 12

13 13

 

 Δx12  = x2 – x1 
 Δy12  = y2 – y1 
 Δz12  = z2 – z1 
 Δx13  = x3 – x1 
 Δy13  = y3 – y1 
 Δz13  = z3 – z1 
 (x1, y1, z1) = coordinates of node 1 
 (x2, y2, z2) = coordinates of node 2 
 (x3, y3, z3) = coordinates of node 3. 

The unit normal vector is calculated as 

 , ,
a b c     

u
n n n

 (33) 

where: 

  =  the unit normal velocity of the plan containing face 1-2-3 
  = a b c 2 2 2 . 

The projected velocity of V1 parallel to the unit normal velocity u is 

   , ,
a a a a a a

Vx Vy Vz
                      

1 1 1n nV1 V1 u V1 u u
n n n n n n

 (34) 

where: 

 , ,Vx Vy Vz1 1 1 = x- , y-, and z-components of V1. 

The projected velocity of V1 onto Face 1-2-3 is  

 
         , , , ,

a b c a b c
Vx Vy Vz Vx Vy Vy

   

                    
1 1 1 1 1 1

n nV1p V1 V1 V1 V1 u

n n n n n n

 (35) 

 

u
n
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It is important to note that each boundary element should have only one 
closed boundary edge/face when the unstructured mesh is constructed. 
Otherwise, the velocity at nodes associated with two closed boundary 
edges/faces will not be projected properly. 
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3 Test Examples 

This chapter presents six PT examples using PT123. The first example was 
designed to compare the use of node-based and element-based velocities 
for a 1-D heterogeneous problem. Examples 2–4 were employed for veri-
fication and comparison among different tracking schemes. The last two 
examples demonstrate the application of PT123 in real-world problems. 
Because the first four examples were designed mainly to examine PT123’s 
numerical techniques, any time and length units can be employed. For 
convenience in discussion, we simply used meter (m) and second (sec) as 
the length and time units, respectively, for these four examples. 

3.1 Example 1: 1-D steady non-uniform velocity field 

In this example, the 1-D domain was composed of 41 nodes and 40 linear 
elements. Every element had the same length of 10 m. The domain 
included four types of material: material type 1 for elements 1–5, 8–11,  
15–17, 25–34; material type 2 for elements 6–7 and 35–40; material type 
3 for elements 12–14 and 22–24; and material type 4 for elements 18–21. 
The materials have distinct levels of permeability for water flow. By 
employing a steady flow throughout the entire domain (from left to right), 
different velocities appeared in distinguishable parts of the domain 
(Figure 6) due to heterogeneity. To highlight the heterogeneity, each linear 
element in Figure 6 was depicted with a rectangle filled with a color repre-
senting the material type. In Figure 6, both element-based and node-based 
velocities are provided. The element-based velocity was computed based 
on the material type associated with each element, where higher velocities 
were in the elements associated with material types that are more 
permeable. 

 
Figure 6. Element- and node-based velocity variation for Example 1. 
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On the other hand, the node-based velocity was determined from element 
connectivity with proportional contribution. As a result, a node at the 
interface of two material types has an average velocity.  

To test PT123, 10 particles were populated at the center of elements 1, 3, 5, 
7, 9, 11, 13, 15, 17, and 19, respectively. A PT computation over a time 
period of 100 sec was conducted using both element-based and node-
based velocities, and both element-by-element (EBE) and non-element-
by-element (NEBE) tracking methods. Although most existing flow models 
compute node-based velocity, the velocity field specification type does not 
represent the velocity change on the interface of two material types accu-
rately. Instead, element-based velocity can represent the true velocity field 
correctly. For this simple 1-D example, the analytical solution of particle 
tracking can be obtained using the element-based velocity according to 
Darcy’s law (Jury et al. 1991), where the time duration expended by a 
particle to pass through an element, Δ Mt , is equal to 

 Δ M
M

M

L
t

V
  (36) 

where: 

 ML  =  the length of line element M 

 MV  =  the element-based velocity of element M. 

Table 2 lists the mean absolute error (MAE) associated with each particle 
when the PT123 results are compared with the analytical solution every 
second during the computation. The MAE for a particle is defined as 

 
( ) ( )

N
computed analytical

i i
i

x t x t
MAE

N






1  (37) 

where: 

 N = number of comparisons (it is 100 here for the comparison is 
made every second) 

( )computed
ix t = computed particle location at the time associated with the 

i-th comparison (it is at time = i sec) 
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( )analytical
ix t = analytical particle location at the time associated with the 

i-th comparison (it is at time = i sec). 

Table 2. Mean absolute errors for Example 1. 

MAE 
Particle ID 

1 2 3 4 5 6 7 8 9 10 
EBE_1_e_0.1 < 1E-6 

EBE_4_e_0.1 < 1E-6 

EBE_1_e_1 < 1E-6 

EBE_4_e_1 < 1E-6 

NEBE_1_e_0.1 0.139 0.156 0.174 0.045 0.172 0.192 0 0.204 0.223 0.979 

NEBE_4_e_0.1 0.023 0.026 0.029 0.043 0.028 0.032 0 0.601 0.670 0.652 

NEBE_1_e_1 0.695 0.784 0.891 0.454 0.862 0.960 ~0 1.021 1.119 14.68 

NEBE_4_e_1 0.463 0.522 0.585 0.435 0.575 0.640 ~0 0.680 0.746 4.896 

EBE_1_n_0.1 16.75 21.91 27.15 13.19 6.956 7.818 0.5 9.707 10.19 9.609 

EBE_4_n_0.1 16.73 21.89 27.14 13.21 6.948 7.811 0.5 9.756 10.20 9.597 

EBE_1_n_1 16.93 22.10 27.29 13.04 7.024 7.886 0.5 9.390 10.18 9.757 

EBE_2_n_1 16.69 21.85 27.10 13.19 6.946 7.808 0.5 9.576 10.11 9.510 

EBE_4_n_1 16.73 21.89 27.14 13.21 6.948 7.810 0.5 9.752 10.20 9.587 

NEBE_1_n_0.1 16.57 21.94 27.15 13.19 6.956 7.818 0.5 9.706 10.19 9.609 

NEBE_4_n_0.1 16.73 21.89 27.14 13.21 6.948 7.811 0.5 9.756 10.20 9.597 

NEBE_1_n_1 16.93 22.10 27.30 13.04 7.025 7.888 0.5 9.314 10.14 9.792 

NEBE_2_n_1 16.70 21.85 27.10 13.20 6.946 7.808 0.5 9.596 10.09 9.482 

NEBE_4_n_1 16.74 21.89 27.14 13.21 6.948 7.811 0.5 9.764 10.19 9.593 

In Table 2, the PT123 simulations are listed with names indicating the four 
test variables specified: “EBE” and “NEBE” identify the tracking method; 
the first number indicates the RK scheme; “e” and “n” denote the use of 
element-based and node-based velocity, respectively; and the second 
number is the time step size for integration. For example, simulation 
“EBE_1_e_0.1” used the element-by-element tracking method, the 
1st-order RK scheme, an element-based velocity field, and a time step size 
of 0.1. 
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Figures 7–10 compare the PT123 results using various RK schemes with 
the analytical solution associated with particles 5 and 10, where the 
element-based velocity was implemented in Figures 7 and 8, and the node-
based velocity was applied in Figures 9 and 10. The legends of Figures 7–
10 refer to the simulations using the same naming system explained above. 

 
Figure 7. Comparison of the tracking paths of particles 5 and 10 using element-based velocity 

and various EBE tracking schemes. 

 
Figure 8. Comparison of the tracking paths of particles 5 and 10 using element-based velocity 

and various NEBE tracking schemes. 

 
Figure 9. Comparison of the tracking paths of particles 5 and 10 using node-based velocity 

and various EBE tracking schemes. 
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Figure 10. Comparison of the tracking paths of particles 5 and 10 using node-based velocity 

and various NEBE tracking schemes. 

Figure 7 shows that all four computational results from EBE-based track-
ing can be considered to match the analytical solutions of particles 5 and 
10 perfectly. This illustrates the advantage of using EBE-based tracking 
when the element-based velocity is employed. Figure 8 and Table 2, on the 
other hand, show that the larger the PT time step size is, the greater error 
NEBE-based tracking produces. The error associated with NEBE-based 
tracking grows with the discontinuity of velocity from one material type to 
another (e.g., from material type 4 to material type 3). It thus suggests that 
NEBE cannot provide accurate tracking results when element-based 
velocity field is used for domains with heterogeneity.  

Figures 9 and 10 show that both EBE- and NEBE-based tracking methods 
produce similar results for particles 5 and 10. They also reveal the tracking 
error resulting from implementing node-based velocity when compared 
with the analytical solution. As shown in Table 2, when the node-based 
velocity was used, i.e., the bottom 10 test cases, the tracking error remains 
significant no matter which RK scheme or time step size were specified. It 
is noted that the error associated node-based velocity can be reduced by 
including small elements around the material interface, but cannot be 
completely removed.  

3.2 Example 2: 2-D steady rotational velocity 

In this example, PT was computed in a 2-D square domain, ranging from 
-2,000 m to 2,000 m in both the x- and the y-directions. The domain was 
discretized using both quadrilateral and triangular elements (Figure 11). 
The mesh was composed of 81 nodes and 96 elements. A steady velocity 
vector was given at each node using Equations 38 and 39 (Figure 11). 
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      , .           , , ,Vx x yπ y x y     0 002 2000 2000 2000 2000  (38) 

      , .           , , ,Vy x yπ x x y     0 002 2000 2000 2000 2000  (39) 

 
Figure 11. The mesh and steady rotational  

velocity field of Example 2. 

Four hundred particles (point ID’s 0 - 399) were placed uniformly on a 
circle centered at (0,1000) with a radius of 700 m (Figure 12). In Fig-
ure 12, each particle is connected to its adjacent two particles with line 
segments to form a 400-edge polygon. With the given steady velocity field, 
each particle should move clockwise around the center, i.e., (0,0), and 
return to its initial position at times that are multiples of 1,000 sec if 
tracking is accurate (Pokrajac and Lazic 2002; Cheng et al. 1996). 

 
Figure 12. Four hundred particles at time = 0 sec  

in Example 2. 
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The results of PT simulations using different RK schemes and time step 
sizes were compared as shown in Table 3 and Figure 13. 

Table 3. Example 2 efficiency comparison. 

Method TSS1 nt,a  nt,t  ε1  (m) ε  (m) 

EBE_RK12 0.002 200,005,167 200,020,212 0.4045E-01 0.6715E-01 

EBE_RK12 0.01 40,005,109 40,020,286 0.2022E+00 0.3355E+00 

EBE_RK12 0.1 4,005,182 4,020,295 0.2023E+01 0.3356E+01 

EBE_RK12 0.5 805,422 820,929 0.1013E+02 0.1681E+02 

NEBE_RK12 0.002 200,000,00 200,000,000 0.4044E-01 0.6711E-01 

NEBE_RK12 0.01 40,000,000 40,000,000 0.2022E+00 0.3356E+00 

NEBE_RK12 0.1 4,000,000 4,000,000 0.2024E+01 0.3358E+01 

NEBE_RK12 0.5 800,000 800,000 0.1016E+02 0.1686E+02 

EBE_RK22 0.1 4,006,687 4,025,247 0.9681E-03 0.1934E-02 

EBE_RK22 1 409,283 432,963 0.4250E-01 0.7050E-01 

EBE_RK22 10 54,861 85,843 0.3906E+01 0.6478E+01 

EBE_RK22 100 26,604 66,423 0.1026E+03 0.1958E+03 

NEBE_RK22 0.1 4,000,000 4,000,000 0.9284E-03 0.1540E-02 

NEBE_RK22 1 400,000 400,000 0.4285E-01 0.7111E-01 

NEBE_RK22 10 40,000 40,000 0.4235E+01 0.7029E+01 

NEBE_RK22 100 4,000 4,000 0.4218E+03 0.7317E+03 

EBE_RK42 10 54,320 84,581 0.8066E-04 0.4005E-03 

EBE_RK42 25 33,597 67,792 0.2345E-01 0.4160E-01 

EBE_RK42 100 26,672 65,833 0.1101E+01 0.3948E+01 

EBE_RK42 500 26,288 66,052 0.4904E+01 0.4815E+02 

NEBE_RK42 10 40,000 40,000 0.3328E-03 0.5523E-03 

NEBE_RK42 25 16,000 16,000 0.3214E-01 0.5334E-01 

NEBE_RK42 100 4,000 4,000 0.8311E+01 0.1379E+02 

NEBE_RK42 500 1,600 1,600 0.2845E+03 0.4721E+03 

EBE_RK452 100 1,347,292 1,456,129 0.4188E-03 0.1062E-02 

EBE_RK452 500 1,347,351 1,456,707 0.4191E-03 0.1062E-02 

EBE_RK452 Cr3 = 1 1,347,359 1,456,676 0.4190E-03 0.1062E-02 

NEBE_RK452 100 1,366,565 1,369,315 0.4088E-03 0.6786E-03 

NEBE_RK452 500 1,366,568 1,369,354 0.4089E-03 0.6786E-03 
1 TSS = time step size. 
2 ATOL = 10-7, DN_SAFE = 10-7. 
3 Cr = Courant number. 
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Figure 13. Mean absolute error versus computational WORK (top) 

and time step size (bottom) for various RK schemes using EBE 
and NEBE tracking for Example 2. 

Table 3 provides a comparison of the efficiency for various RK schemes 
employed in both the EBE- and the NEBE-based PT. Here, nt,t is the total 
number of tracking time steps attempted, nt,a is the total number of steps 
accepted, and “Cr = CR” refers to choosing the initial time step for tracking 
over an element using a local target Courant number of CR, as defined in 
Equation 11. When an adaptive RK scheme is used and the estimated error 
is greater than the prescribed error tolerance, the attempted PT is not a 
successful segment. The attempted PT becomes a successful segment when 
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time step size is reduced to a degree such that the prescribed accuracy is 
satisfied. Another example of an unsuccessful tracking segment is when 
the EBE-based PT is employed and a particle would go outside the active 
element, time step size needs to be reduced so that the particle would 
reach the boundary of the active element. This is why when EBE-based PT 
or RK45 is used, nt,t can be greater than nt,a. Two types of error indica-
tion are also included in Table 3 for accuracy comparison, where errors 
were measured using the analytical solution (Cheng et al. 1996) at times 
tn = 1,000n sec, n = 1, ... 10. These two error indicators are defined as 
follows. 

 
,
,

( ) ( )PT analytical
i n i n

i NPT
n

ε t t
NPT 



    x x1
1
1 10

1 1
10

 (40) 

 
,

max ( ) ( )PT analytical
i n i ni NPT

ε t t 
 x x

1
 (41) 

where: 

 NPT = number of particles. 

To compare the computational effort for each test case more closely, we 
define a number WORK as follows. 

 ,t t StageWORK n N   (42) 

where NStage is equal to 1 for RK1, 2 for RK2, 4 for RK4, and 6 for RK45. 

Figure 13 plots mean absolute error, i.e., ε1, versus WORK and time step 
size for various RK schemes using EBE and NEBE. 

It must be noted that the WORK associated with NEBE-based tracking, as 
shown in Figure 13, does not include the computation spent for ray trac-
ing. From Table 3 and Figure 13, the following are observed: 

1. For non-adaptive, NEBE-based PT, nt,a = nt,t and total tracking time 
(i.e., 10,000 sec in Example 2) = TSS x nt,t, where TSS is time step size. 

2. For EBE-based PT, nt,a < nt,t due to the reduction of TSS when the par-
ticle would go outside of the active element. 
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3. Given specified TSS, non-adaptive, EBE-based PT yields smaller ε1, i.e., 
more accurate, when compared with the respective non-adaptive, 
NEBE-based PT.  

4. When the higher-order RK scheme is used, the larger TSS can be used 
to obtain accurate results when non-adaptive PT is considered. 

5. When the non-adaptive tracking is considered, the EBE-based PT 
requires more RK computation (i.e., WORK) than the NEBE-based PT 
due to the reduction of TSS when the particle would go outside of the 
active element. 

6. Given specified error tolerance, the tracking effort (i.e., WORK) is 
insensitive to TSS when adaptive schemes are used. 

3.3 Example 3: 2-D swirl velocity 

This example also computed PT in a 2-D square domain, though ranging 
from 0 to 1 m in both the x- and the y-directions. The domain was dis-
cretized using 800 triangular elements and 441 nodes. Transient nodal 
velocities were computed at time = 0.0, 0.5, 1.0, …, 79.5, and 80 sec using 
Equations 43 and 44. These equations describe a velocity field five times 
faster than the velocity field employed for a linear advection problem 
(Problem E) in (Farthing and Kees 2009), where the initial concentration 
disk underwent significant deformation during the transient simulation.  

          2, , cos sin sin          , , ,
πt

Vx x y tπy πx x y
        

5 2 0 1 0 1
8

  (43) 

          2, , cos sin sin         , , ,
πt

Vy x y tπx πy x y
        

5 2 0 1 0 1
8

  (44) 

As shown in Figure 14, the velocity vectors were counterclockwise from 
time = 0 to 4 sec, clockwise from time = 4 to 12 sec, and counterclockwise 
from time = 12 to 16 sec to complete a cycle. Velocities were zero at 
time = 4 and 12 sec when the flow changed directions.  

For testing PT, 400 particles were initialized forming a circle, where the 
center was at (0.5,0.75) and the radius was 0.15 m (Figure 15). The hydro-
dynamic time step, i.e., 0.5 sec, was used as the initial time step size for 
PT. 
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Figure 14. Transient velocity fields at various times of Example 3. 

 
Figure 15. Four huncred particles at time = 0 sec 

in Example 3. 

Figures 16 and 17 show the PT results from time = 0 to 8 sec and from  
time = 8 to 16 sec, respectively. Using RK45, the initial circle re-appeared 
at time = 8 and 16 sec as accurate PT will yield even though the swirl-type 
velocity field changed the relative locations of the 400 particles drastically 
during the tracking process. 
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Figure 16. Example 3 particle tracking results at time = 0, 2, 4, 6, and 8 sec using RK45. 

 
Figure 17. Example 3 particle tracking results at time = 8, 10, 12, 14, and 16 using RK45. 

As seen in Figure 18, the shape and location of the initial circle was main-
tained at time = 16, 32, 48, 64, and 80 sec, which correspond to the end of 
1, 2, 3, 4, and 5 cycles of PT, respectively, when RK45 was used. 
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Figure 18. Example 3 particle tracking results at time = 0, 16, 32, 48, 64, 

and 80 using RK45. 

Table 4 compares the efficiency for various RK schemes employed in both 
the EBE- and the NEBE-based PT, where errors were measured using the 
analytical solution (Farthing and Kees 2009) at times tn = 8n, n = 1, ... 10. 
Table 5 compares the computation profile that includes the four most 
called subroutines associated with each PT technique employed for 
Example 3. From Tables 4 and 5, the following observations are made: 

1. For adaptive PT, reducing ATOL and/or DN_SAFE would increase 
accuracy. 

2. For adaptive PT, both nt,a and nt,t are sensitive to ATOL when 
TTS = 0.1, but become less sensitive when Cr = 0.1 was employed to 
determine TTS. 

3. For both adaptive and non-adaptive PT, the computation involved in 
ray tracing is significant (subroutines EL_INTERSECT123 and ES123 
are called for ray tracing computation). 

4. The ratio of ray-tracing computation to RK computation increases with 
TSS when non-adaptive PT is considered. 
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Table 4. Example 3 efficiency comparison. 

Method TSS1 nt,a nt,t ε1  (m) ε  (m) 

EBE_RK22 0.001 35,305,792 43,383,263 0.7185E-04 0.4071E-03 

EBE_RK22 0.002 21,615,186 33,870,002 0.3960E-03 0.1649E-02 

EBE_RK22 0.004 45,019,632 119,458,841 0.2776E-02 0.1451E-01 

NEBE_RK22 0.001 32,000,000 32,000,000 0.6274E-04 0.2851E-03 

NEBE_RK22 0.002 16,000,000 16,000,000 0.5009E-03 0.2370E-02 

NEBE_RK22 0.004 8,000,000 8,000,000 0.4037E-02 0.2102E-01 

EBE_RK42 0.005 11,110,354 20,688,936 0.2758E-04 0.2468E-03 

EBE_RK42 0.01 8,720,160 19,494,241 0.6537E-04 0.3515E-02 

EBE_RK42 0.02 7,883,456 19,452,895 0.2441E-03 0.7039E-02 

EBE_RK42 Cr3 = 0.1 13,554,443 22,603,180 0.2479E-04 0.2084E-03 

EBE_RK42 Cr3 = 0.5 7,771,777 19,192,392 0.4727E-03 0.4152E-01 

NEBE_RK42 0.005 6,400,000 6,400,000 0.3895E-04 0.4226E-03 

NEBE_RK42 0.01 3,200,000 3,200,000 0.6058E-03 0.8630E-02 

NEBE_RK42 0.02 1,600,000 1,600,000 0.9291E-02 0.6785E-01 

EBE_RK452 0.1 8,790,432 22,187,890 0.3475E-04 0.3120E-03 

EBE_RK454 0.1 33,772,766 61,688,212 0.2777E-04 0.2319E-03 

EBE_RK452 0.5 8,794,292 22,201,438 0.3440E-04 0.3102E-03 

EBE_RK452 Cr3 = 0.1 12,193,618 21,458,297 0.2590E-04 0.2221E-03 

EBE_RK455 Cr3 = 0.1 8,127,007 20,353,079 0.2721E-03 0.2174E-02 

EBE_RK456 Cr3 = 0.1 9,158,432 22,563,127 0.9014E-05 0.7645E-04 

EBE_RK452 Cr3 = 0.5 8,780,233 21,750,165 0.3465E-04 0.2931E-03 

NEBE_RK452 0.1 22,199,342 35,354,014 0.1364E-04 0.1189E-03 

NEBE_RK452 0.5 22,207,119 35,441,682 0.1399E-04 0.1213E-03 

1 TSS = time step size. 
2 ATOL = 10-9, DN_SAFE = 10-6. 
3 Cr = Courant number. 
4 ATOL = 10-10, DN_SAFE = 10-6. 
5 ATOL = 10-9, DN_SAFE = 10-5. 
6 ATOL = 10-9, DN_SAFE = 10-7. 
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Table 5. Example 3 computation profile comparison. 

 
Method 

 
TSS1 

Subroutine 

RK124_EBE_PT INTRP123 ELTRAK123 VEL123 

EBE_RK42 0.005 100,552,293 92,654,981 68,492,092 59,174,421 

EBE_RK42 0.01 90,221,706 81,458,098 58,395,681 51,233,224 

EBE_RK42 0.02 88,027,668 78,641,648 55,353,201 49,121,878 

EBE_RK42 Cr3 = 0.1 113,517,654 106,106,754 80,096,228 68,311,294 

EBE_RK42 Cr3 = 0.5 86,749,218 77,527,408 54,676,776 48,364,434 

 
Method 

 
TSS 

Subroutine 

EL_INTERSECT123 INTRP123 ES123 RK4_NEBE_PT 

NEBE_RK42 0.005 152,955,419 83,965,076 54,244,309 40,690,297 

NEBE_RK42 0.01 111,153,383 51,916,207 28,408,154 27,842,713 

NEBE_RK42 0.02 88,366,138 35,344,362 21,012,448 15,117,733 

 
Method 

 
TSS 

Subroutine 

RK45_EBE_PT INTRP123 VEL123 ELTRAK123 

EBE_RK452 0.1 128,686,100 117,011,573 84,310,320 60,795,126 

EBE_RK454 0.1 446,300,396 419,862,288 322,923,972 199,733,606 

EBE_RK452 0.5 128,721,929 117,050,946 84,331,893 60,824,902 

EBE_RK452 Cr3 = 0.1 133,667,921 126,062,226 90,751,327 73,550,391 

EBE_RK455 Cr3 = 0.1 125,462,993 118,516,502 85,422,371 69,234,979 

EBE_RK455 Cr3 = 0.1 138,531,737 130,515,713 93,886,279 76,145,869 

EBE_RK452 Cr3 = 0.5 127,030,325 115,785,907 83,529,995 60,321,769 

 
Method 

 
TSS 

Subroutine 

EL_INTERSECT123 INTRP123 RK45_NEBE_PT ES123 

NEBE_RK452 0.1 1,480,529,987 724,017,184 472,443,976 393,743,058 

NEBE_RK452 0.5 1,521,311,716 736,107,963 473,339,533 402,591,621 

1 TSS = time step size. 
2 ATOL = 10-9, DN_SAFE = 10-6. 
3 Cr = Courant number. 
4 ATOL = 10-10, DN_SAFE = 10-6. 
5 ATOL = 10-9, DN_SAFE = 10-5. 
6 ATOL = 10-9, DN_SAFE = 10-7. 
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3.4 Example 4: 3-D helical velocity 

Example 4 accounted for 3-D PT, where the domain was a cube, ranging 
from -100 m to 100 m in all three directions. The domain was discretized 
twice using mixed types of element: mesh 1 used tetrahedral and triangu-
lar prism elements, while mesh 2 used hexahedral and triangular prism 
elements. Mesh 1 was composed of 12,000 elements, and mesh 2 had 
32,000 elements. Both meshes had 9,261 nodes: 21 equally spaced nodes 
in each direction. All domain boundaries were specified as open boun-
daries; therefore, particles exited the domain when they hit the domain 
boundary. The nodal velocity was computed according to Equations 45–47 
at time = 0, 200, 400, 600, 800, 1,000, 1,200, 1,400, and 1,600 sec.  

 

 
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  (46)  

    , , , zVz x y z t V t 0   (47) 

where: 

V0(t), Vz0(t) = piecewise linear functions of time (Figure 19). 

 
Figure 19. Functions V0(t) and Vz0(t) for Example 4. 
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As shown in Figure 19, the values of V0(t) and Vz0(t) changed from positive 
to negative at time = 600 sec, but their absolute values were symmetric 
about time = 600 sec. Due to this velocity symmetry, particles return to 
their initial positions if PT began at time = (600 – t) sec and ended at 
time = (600 + t) sec, where t is between 0 and 600 sec.  

Ten particles were populated in this example for tracking between 
time = 115 and 1,085 sec, i.e., t = 485 sec. The 10 particles were located on 
the plane of z = -90 m with x- and y-coordinates of (10,-10), (20,-20), 
(30,-30), (40,-40), (50,-50), (60,-60), (70,-70), (80,-80), (90,-90), and 
(100,-100). Figure 20 presents the forward PT results on mesh 1, while 
Figure 21 presents the backward PT results on mesh 2. Both figures 
demonstrate accurate PT computation using RK45. This example also 
verifies PT123’s capability of directional tracking, and that forward and 
backward tracking produces equivalent results. 

 
Figure 20. Example 4 forward particle tracking paths from time = 115 to 600 sec (left) 

and from time = 600 to 1,085 sec (right) in mesh 1 (using mixed tetrahedral 
and triangular prism elements). 
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Figure 21. Example 4 backward particle tracking paths from time = 1,085 to 600 sec (left) 

and from time = 600 to 115 sec (right) in mesh 2 (using mixed hexahedral 
and triangular prism elements). 

3.5 Example 5: Seabrook flow field 

Example 5 used a transient velocity field computed from the 2-D shallow 
water module of ADH (ADH 2010) that was generated for the Seabrook 
Fish Larval Transport Study in the city of New Orleans, LA (Tate et al. 
2010). Figure 22 shows the bathymetry of the study domain, which was 
discretized using 35,649 triangular elements and 19,719 nodes. All boun-
daries, except for the tidal boundary on the east side of the domain, were 
defined as closed boundaries with zero normal flux. 

The computed velocity field from time = 3,888,000 to 6,300,000 sec, 
which corresponded to 00:00:00 on February 16, 2008 and 22:00:00 on 
March 13, 2008, was used for this simulation. The velocity was computed 
every 30 minutes for a total of 1,341 velocity time steps. A group of par-
ticles was specified at six different locations at time = 4,000,000 sec  
(G1–G6, Figure 23), where each group contained 400 particles distributed 
evenly on a 15.25-m (50-ft) radius circle. Figure 24 shows the particle dis-
tributions at various times using RK45, where the initial PT time step was 
set to 5 min. Figure 25 provides individual views of the particle distribu-
tions of G2, G5, and G6 at the start and end times. 
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Figure 22. Bathymetry of the Seabrook Fish Larval Transport Study domain. 

 
Figure 23. Six groups of particles populated at time = 4,000,000 sec  
for tracking in Example 5, where each group contained 400 particles. 
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Figure 24. Example 5 PT results at various times. 
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Figure 25. Zoom-in of Example 5 PT results for the G2, G5, and G6 particles. 

The evolution of each particle group’s distribution can assist in the under-
standing and analysis of the local flow pattern associated with that group 
at various times. For instance, the following observations can be made: 

1. The particles in G2, G5, and G6 remained in close proximity as a group 
(Figure 25). 

2. There was significant mixing for the G1, G3, and G4 particles due to 
fast flow through nearby narrow channels (Figure 24).  

3. The G5 particles moved only short distances (Figure 25), indicating 
very slow flow in the area where the G5 particles were populated. 

4. The G6 particles had migrated afar (Figure 24) during the PT period of 
time. 

5. Many G3 particles were trapped in the central wetland area (Figure 23) 
after being pushed into that area (Figure 24). 
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3.6 Example 6: Umatilla groundwater flow field 

Example 6 employed a steady-state velocity field computed from a 3-D 
groundwater model that was constructed to test the effectiveness of vari-
ous alternatives for RDX (Cyclotrimethylenetrinitramine) cleanup at the 
Umatilla Chemical Depot site (Umatilla, OR). The steady-state velocity 
employed for this example was generated for an alternative that con-
sidered two pumping wells, PW1 and PW2, with extraction rates of 
567.8 liters per minute (L/m) (150 gallons per minute (gpm)) on the 
downstream side of the RDX contamination zone, plus a continuous 
injection of clean water above the contamination zone to mobilize the RDX 
trapped in the unsaturated zone (Figure 26). An enforced head was 
applied to the ground surface nodes associated with the contamination 
zone to mimic the water stage of a lagoon constructed above the 
contamination zone. The model domain was composed of 172,140 nodes 
and 320,378 triangular prism elements (Figure 26). 

 
Figure 26. Umatilla groundwater model mesh and the water injection and groundwater 

pumping associated with an RDX cleanup alternative. 
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Figure 27 shows the 20-day backward PT paths of 14 particles originated 
at various depths along the well screen of PW1. A color scheme depicts 
path segments of different tracking time periods. On the other hand, 
Figure 28 shows the 100-day forward PT paths of 24 particles that were 
located initially on the boundary of the injection area using a similar color 
scheme. It shows that the particles originating from the far end of the 
injection area will not be captured by PW1 with a pumping rate of 
567.8 L/m (150 gpm). 

 
Figure 27. 20-day backward PT from PW1 (14 particles). 

To help understand the effectiveness of PW1 and PW2 for RDX remedia-
tion, two circles of 400 particles, each with radii of 3.05 m (10 ft) (P_R10, 
Figure 29) and 7.6 m (25 ft) (P_R25, Figure 29), were placed on the injec-
tion area for forward PT. The particles of P_R10 appear in white and the 
particles of P_R25 are highlighted using a color spectrum. 
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Figure 28. 100-day forward PT from injection (24 particles). 

 

 
Figure 29. Two groups of particles (P_R10 and P_R25) populated at time = 0 day for forward 

PT in Example 5, where each group had 400 particles. 
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Figure 30 depicts the distributions of the particles of P_R10 and P_R25 at 
various times in top view, while Figure 31 shows an oblique view, i.e., pro-
jected perspective, from inside of the 3-D domain. From these two figures, 
the following are observed: 

1. The forced water injection effectively drove particles down to the lower 
aquifers. 

2. Particles entered the pumping wells from the bottom portion even 
though the wells were screened from top to bottom. 

3. PW1 captured most of the P_R10 (white) particles and PW2 captured 
the remainder. 

4. All P_R10 particles entered the two pumping wells before time = 200 d 
(days). 

5. PW1 and PW2 were not able to capture all P_R25 particles: particles 
highlighted green continued past the two pumping wells. 

 
Figure 30. Example 6 PT results at various times in top view for particles of P_R10 

(in white color) and P_R25 (in rainbow colors). 
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Figure 31. Example 6 PT results at various times in oblique view for particles of P_R10 

(in white color) and P_R25 (in rainbow colors). 
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4 Summary 

This report describes the initial effort of developing a particle tracking 
computer program named PT123. PT123 was designed to perform accurate 
and efficient particle tracking of massless particles for (1) solving multi-
dimensional transport problem using the ELLAM numerical method as 
proposed in the Civil Works Basic Research project entitled “Efficient 
Resolution of Complex Transport Phenomena Using Eulerian-Lagrangian 
Techniques,” and (2) enhancing ERDC’s modeling capability through 
linkage to or incorporation into existing flow, transport, and individual-
based particle tracking models.  

Given either node-based or element-based velocity fields, PT123 can track 
particles forward or backward in 1-, 2-, and 3-D unstructured or converted 
structured meshes. The elements used to construct PT123 meshes are line 
elements in 1-D, triangular and/or quadrilateral elements in 2-D, and 
tetrahedral, triangular prism, and/or hexahedral elements in 3-D. Various 
RK schemes are available in PT123 to solve the ordinary differential equa-
tions describing the motion of massless particles, where adaptive time 
integration can be used to meet a user-specified accuracy requirement. 
PT123 implements both EBE- and NEBE-based tracking. The EBE-based 
tracking technique is employed to minimize the element searching effort 
when tracking can go beyond one element. PT123 also conducts velocity 
projection to perform smooth tracking along closed boundaries. A 1-D 
example was designed to highlight tracking error introduced by using 
node-based velocity for flow fields accounting for heterogeneity. Three test 
examples in multiple dimensions were used to examine PT123’s computa-
tional accuracy. A 2-D transient surface water flow field simulated using 
ADH and a 3-D groundwater velocity field using WASH123D were also 
employed to demonstrate PT123’s application in real-world problems.  

Future advancements may include (1) parallelization, (2) GUI develop-
ment, (3) library format, (4) incorporation of mechanisms/processes that 
modify tracking velocities, and (5) development of auxiliary tools to con-
vert data from finite difference or finite volume models to the PT123 
format. 
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Appendix A: Program Structure of PT123 
Program structure description 

Figure A1 is the flow chart of PT123. As shown in Figure A1, PT123 is 
composed of four major components:  

• Input 
• Data Preparation 
• PT Computation 
• Output 

 
Figure A1. Flow chart of PT123. 
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The Input component reads the geometry of the computational domain, 
flow field, velocity conversion factor, particle specific, and boundary 
characteristics data. The Data Preparation component processes the data 
from the Input component to prepare necessary information for PT com-
putation, which includes node-element connectivity, element character-
istic length, BINARY flow field and conversion factor, and coordinate shift. 
In the PT Computation component, there is a time loop for designated PT 
computation which can be either forward or backward PT. When transient 
velocities are employed for PT computation, PT123 first identifies the 
hydrodynamic time interval that includes the user-specified start time of 
tracking; followed by retrieving the flow fields and velocity conversion 
factors associated with the two bounding time steps (say tn and tn+1) of that 
hydrodynamic time interval from the BINARY files prepared in the Data 
Preparation component; it then computes the tracking velocities associ-
ated with the two time steps by combining the flow field and the velocity 
conversion factor (tracking velocity = (input velocity)/(velocity conversion 
factor)); finally it implements PT computation for each particle from the 
tracking start time to either tn (for backward PT) or tn+1 (for forward PT) 
using the user-specified tracking technique (i.e., EBE or NEBE). During 
PT computation, PT123 stores particle locations at user-specified times in 
what are called the trajectory arrays. After this first hydrodynamic time 
interval, the PT computation proceeds to the next time interval and 
repeats the aforementioned processes until the user-specified end time of 
tracking is reached. Alternatively, when a steady-state velocity condition is 
specified, a hydrodynamic time interval is generated with two bounding 
time steps, tn and tn+1, that match the tracking start and end times. The 
computed tracking velocities of tn and tn+1 will be identical and based on 
the steady-state flow field and velocity conversion factor. In this case, the 
PT computational time loop is contained by a single hydrodynamic time 
interval, therefore, allowing PT123 to call the same subroutines as the 
transient velocity. After the completion of each PT computation, the Out-
put component writes the data stored in the trajectory arrays to designated 
ASCII and BINARY solution files for analysis and post-processing. 

Figure A2 depicts the program structure of PT123, where each box repre-
sents a subroutine included in PT123 and each arrow connects a pair of 
parent-child subroutines. Consistent shade color code is used to relate 
each subroutine to the four components of PT123 mentioned in Figure A1. 
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Figure A2. Program structure of PT123. 

Subroutine description 

In the following, a brief description of each subroutine with its parent and 
child associations is given. 

1. PT123: This is the main program. It reads information necessary to 
conduct PT, calls either EBE_PT or NEBE_PT to execute PT, and 
writes out the tracking history of each particle. 
 
Calling:  STRIP, GEOM123, COORD_SHIFT, LRL123, BN123, CL123, 
OBND123, BINARY_PREPARE, FIND_1D_ELEMENT, EBE_PT, 
NEBE_PT, OUTPUT123. 
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2. EBE_PT: This subroutine implements PT on an element-by-element 
basis, where various RK schemes can be used for tracking 
computation. 
 
Called by: PT123 
 
Calling: EL_VEL_PREP, DT_ETRACK, ELTRAK123 
 

3. NEBE_PT: This subroutine implements PT on a non-element-by-
element basis, where various RK schemes can be used for tracking 
computation. 
 
Called by: PT123 
 
Calling: INTRP123, EB_CHECK, LOCATE_M, RK1_NEBE_PT,  
  RK2_NEBE_PT, RK4_NEBE_PT, RK45_NEBE_PT,   
  PT_STORE 
 

4. ELTRAK123: This subroutine executes PT within an element using 
the designated RK scheme. 
 
Called by: EBE_PT 
 
Calling: RK45_EBE_PT, RK124_EBE_PT, INTRP123, PHI_COMP,  
  PT_STORE, EB_CHECK 
 

5. RK1_NEBE_PT: This subroutine executes PT on a non-element-by-
element basis using the RK1 scheme for each tracking computation. 
 
Called by: NEBE_PT 
 
Calling: EL_VEL_PREP, VEL123, ES123 
 

6. RK2_NEBE_PT: This subroutine executes PT on a non-element-by-
element basis using the RK2 scheme for each tracking computation. 
 
Called by: NEBE_PT 
 
Calling: EL_VEL_PREP, VEL123, ES123 
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7. RK4_NEBE_PT: This subroutine executes PT on a non-element-by-
element basis using the RK4 scheme for each tracking computation. 
 
Called by: NEBE_PT 
 
Calling: EL_VEL_PREP, VEL123, ES123 
 

8. RK45_NEBE_PT: This subroutine executes PT on a non-element-by-
element basis using the embedded 4th- and 5th-order RK scheme for 
each tracking computation. 
 
Called by: NEBE_PT 
 
Calling: EL_VEL_PREP, VEL123, ES123 
 

9. EL_VEL_PREP: This subroutine prepares element nodal velocity for 
PT within the specified element using specified special and temporal 
interpolation. When the particle being tracked hits a closed boundary 
segment in 2-D or a closed boundary face in 3-D, tangential velocity 
is computed at each of the element nodes on the closed boundary and 
will be used for the following PT to ensure tracking along closed 
boundary.  
 
Called by: EBE_PT, RK1_NEBE_PT, RK2_NEBE_PT,   
   RK4_NEBE_PT, RK45_NEBE_PT 
 
Calling: V_PROJTN23 
 

10. V_PROJTN23: This subroutine computes the projected velocity at 
element nodes on the closed boundary. 
 
Called by: EL_VEL_PREP 
 

11. RK45_EBE_PT: This subroutine implements adaptive time 
integration using embedded 4th- and 5th-order RK for each tracking 
computation. 
 
Called by: ELTRAK123 
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Calling: VEL123, INTRP123, PHI_COMP 
 

12. RK124_EBE_PT: This subroutine implements 1st-, 2nd-, or 4th-
order RK for each tracking computation. 
 
Called by: ELTRAK123 
 
Calling: VEL123, INTRP123, PHI_COMP 
 

13. STRIP: This subroutine retrieves the desired file name by removing 
the leading and trailing spaces. 
 
Called by: PT123  
 

14. GEOM123: This subroutine reads the element indices and nodal 
coordinates of unstructured mesh within which the desired PT is 
conducted. 
 
Called by: PT123 
 
Calling: CRACKD, CRACKI 
 

15. COORD_SHIFT: This subroutine conducts coordinate shift in all 
directions given specified shifts.  
 
Called by: PT123 
 

16. LRL123: This subroutine generates pointer arrays for node-element 
connectivity. 
 
Called by: PT123 
 

17. BN123: This subroutine determines boundary-node information, 
where IB(N) is set to zero if node N is an interior node and 1 if it is a 
boundary node. 
 
Called by: PT123 
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18. CL123: This subroutine computes the characteristic length of a given 
element. 
 
Called by: PT123 
 

19. OBND123: This subroutine reads the open-boundary-node informa-
tion and sets IB(NP) to 1 if node NP is an open-boundary node. 
 
Called by: PT123 
 
Calling: CRACKI 
 

20. BINARY_PREP: This subroutine prepares BINARY velocity and 
velocity conversion factor files based on the given ASCII files. 
 
Called by: PT123 
 

21. PHI_COMP: This subroutine loops over all possible scenarios to 
(1) determine PHI if the particle being tracked passes through the 
specified element and ends at a location outside of the element and 
(2) locate element node I1, I2, and I3 for the successive tracking when 
the particle does exit the element. 
 
Called by: ELTRAK123, RK45_EBE_PT, RK124_EBE_PT 
 
Calling: PHI123 
 

22. PHI123: This subroutine computes PHI based on the given D1, D2, 
and D12 values. 
 
Called by: PHI_COMP 
 
Calling: EB_CHECK  
 

23. EB_CHECK: This subroutine prepares the I1, I2, I3 information for 
the successive tracking when the tracked particle hits an element 
boundary. 
 
Called by: NEBE_PT, ELTRACK123, PHI123 
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24. VEL123: This subroutine computes the time derivative functional 
value needed for using the designated RK scheme, where the time 
derivative for PT is velocity. 
 
Called by: RK45_EBE_PT, RK124_EBE_PT, RK1_NEBE_PT,  
   RK2_NEBE_PT, RK4_NEBE_PT, RK45_NEBE_PT 
 
Calling: INTRP123 
 

25. INTRP123: This subroutine computes the values of spatial interpo-
lation functions. 
 
Called by: ELTRAK123, VEL123, RK45_EBE_PT, 
RK124_EBE_PT,    NEBE_PT 
 
Calling: ADJUST123, XSI_2, XSI_3, XSI_3P 
 

26. ES123: This subroutine searches for the element containing point Q 
given the element connectivity and the locations of points P and Q, 
where a ray search technique is employed. 
 
Called by: RK1_NEBE_PT, RK2_NEBE_PT, RK4_NEBE_PT,  
   RK45_NEBE_PT 
 
Calling: EL_INTERSECT123 
 

27. EL_INTERSECT123: This subroutine locates the possible intersec-
tions of the ray passing through given points P and Q with the boun-
dary nodes (1-D), sides (2-D), or faces (3-D) of a specified element. 
 
Called by: ES123 
 
Calling: FIND_INTERSECT, EB_CHECK, INTRP123 
 

28. FIND_INTERSECT: This subroutine computes the intersection of the 
ray passing through given points P and Q with a specified element 
node (1-D), side (2-D), or face (3-D). 
 
Called by: EL_INTERSECT123 
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29. PT_STORE: This subroutine records tracking locations at the 
specified frequency. 
 
Called by: ELTRAK123, NEBE_PT 
 

30. ADJUST123: This subroutine (1) determines the indicators IADJUST, 
IXI, and IDI for necessary location adjustment when the particle is 
sufficiently close to an element boundary and (2) adjusts the inter-
polation parameters DN, XI, and DI as needed. 
 
Called by: INTRP123 
 

31. XSI_2: This subroutine computes the local coordinates associated 
with a location within a quadrilateral element based on the given 
Cartesian coordinates. 
 
Called by: INTRP123 
 

32. XSI_3: This subroutine computes the local coordinates associated 
with a location within a hexahedral element based on the given 
Cartesian coordinates. 
 
Called by: INTRP123 
 

33. XSI_3P: This subroutine computes the local/natural coordinates 
associated with a location within a triangular prism element based on 
the given Cartesian coordinates. 
 
Called by: INTRP123 
 

34. CRACKD: This subroutine retrieves real (floating-point) data from a 
line data record. 
 
Called by: GEOM123 
 

35. CRACKI: This subroutine retrieves integer data from a line data 
record. 
 
Called by: GEOM123, OBND123 
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36. LOCATE_M: This subroutine finds element M using node-element 
connectivity based on the given global node ID’s I1, I2, and/or I3. 
Element M is different from the given element M0 and contains a no-
flow boundary element edge (2-D) or face (3-D). 
 
Called by: NEBE_PT 
 

37. FIND_1D_ELEMENT: This subroutine locates the 1-D element that 
contains the particle of interest based on the location of the particle. 
 
Called by: PT123 
 

38. OUTPUT123: This subroutine writes particle trajectories to the desig-
nated ASCII and BINARY solution files.   
 
Called by: PT123 
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Appendix B: Input Guide of PT123 

This appendix describes all files needed for running the executable of 
PT123. These files are  

1. a super file; 
2. a geometry file;  
3. a particle specifics file;  
4. a boundary file;  
5. velocity files;  
6. velocity conversion factor files, 
7. solution files.  

The details of these files, except for the solution files, are described in this 
appendix. The solution files are described in Appendix C. 

Super file 

When PT123 is executed, the user will be asked to provide the name of the 
super file that specifies all the input and output files necessary for PT 
computation. The contents of a super file are listed below. 

1st line (free format) 

Entry Variable/Header Type Definition 

1 NEQ Integer Number of dimension (1 for 1-D, 2 for 2-D, and 3 for 3-D 
PT computation) 

2nd line (free format) 

Entry Variable/Header Type Definition 

1 ID_VEL Integer 0 = steady velocity; 1 = transient velocities 

2 ID_VFILE Integer 0 = read ASCII velocity; 1 = read BINARY velocity 

3rd line (free format) 

Entry Variable/Header Type Definition 

1 DN_SAFE Real Safe margin associated with the interpolation functional 
value (DN). DN is set to 0 if DN was computed a negative 
value and abs(DN) is smaller than DN_SAFE. Likewise, DN 
is set to 1 if DN was computed greater than 1 and abs(DN-
1) is smaller than DN_SAFE. 

4th line (free format) 

Entry Variable/Header Type Definition 

1 ID_BN Integer 1 = all boundary nodes are set to be open-boundary 
nodes;  
0 = open boundary nodes are defined in the open 
boundary file, i.e., OBND_fn specified in the 7th line below. 
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5th line (A4, 1X, A80) 

Entry Variable/Header Type Definition 

1 GEOM Character Geometry file header 

2 GEOM_fn Character Geometry file name 

6th line (A4, 1X, A80) 

Entry Variable/Header Type Definition 

1 PTSP (or PTS2) Character PT specifics file header 

2 PTSP_fn Character PT specifics file name 

7th line (A4, 1X, A80): this line is optional 

Entry Variable/Header Type Definition 

1 OBND Character Open-boundary file header 

2 OBND_fn Character Open-boundary file name 

8th – 13th lines are used only when node-based velocity is considered. 
8th line (A4, 1X, A80) is required when ID_VFILE = 0. 

Entry Variable/Header Type Definition 

1 VNAS Character Node-Based Velocity file header  

2 VNAS_fn Character Node-Based Velocity file name (ASCII) 

9th line (A4, 1X, A80) 

Entry Variable/Header Type Definition 

1 VNBF Character Node-Based Velocity file header  

2 VNBF_fn Character Node-Based Velocity file name (BINARY, forward) 

10th line (A4, 1X, A80) 

Entry Variable/Header Type Definition 

1 VNBB Character Node-Based Velocity file header  

2 VNBB_fn Character Node-Based Velocity file name (BINARY, backward) 

11th line (A4, 1X, A80) 

Entry Variable/Header Type Definition 

1 NEMA Character Node-Based Velocity Conversion Factor file header 

2 NEMA_fn Character Node-Based Velocity Conversion Factor file name (ASCII) 

12th line (A4, 1X, A80) 

Entry Variable/Header Type Definition 

1 NEMF Character File header of Node-Based Velocity Conversion Factor used 
for forward PT 

2 NEMF_fn Character Node-Based Velocity Conversion Factor file name (BINARY) 

13th line (A4, 1X, A80) 

Entry Variable/Header Type Definition 

1 NEMB Character File header of Node-Based Velocity Conversion Factor used 
for backward PT 

2 NEMB_fn Character Node-Based Velocity Conversion Factor file name (BINARY) 

8th – 13th lines are used only when element-based velocity is considered. 
8th line (A4, 1X, A80) is required when ID_VFILE = 0. 

Entry Variable/Header Type Definition 

1 VEAS Character Element-Based Velocity file header  

2 VEAS_fn Character Element-Based Velocity file name (ASCII) 

9th line (A4, 1X, A80) 
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Entry Variable/Header Type Definition 

1 VEBF Character Element-Based Velocity file header  

2 VEBF_fn Character Element-Based Velocity file name (BINARY, forward) 

10th line (A4, 1X, A80) 

Entry Variable/Header Type Definition 

1 VEBB Character Element-Based Velocity file header  

2 VEBB_fn Character Element-Based Velocity file name (BINARY, backward) 

11th line (A4, 1X, A80) 

Entry Variable/Header Type Definition 

1 EEMA Character Element-Based Velocity Conversion Factor file header 

2 EEMA_fn Character Element-Based Velocity Conversion Factor file name 
(ASCII) 

12th line (A4, 1X, A80) 

Entry Variable/Header Type Definition 

1 EEMF Character File header of Element-Based Velocity Conversion Factor 
used for forward PT 

2 EEMF_fn Character Element-Based Velocity Conversion Factor file name 
(BINARY) 

13th line (A4,1X,A80) 

Entry Variable/Header Type Definition 

1 EEMB Character File header of Element-Based Velocity Conversion Factor 
used for backward PT 

2 EEMB_fn Character Element-Based Velocity Conversion Factor file name 
(BINARY) 

14th line (A4, 1X, A80) 

Entry Variable/Header Type Definition 

1 SAPT Character PT history solution file header 

2 SAPT_fn Character PT history solution file name (ASCII) 

15th line (A4, 1X, A80) 

Entry Variable/Header Type Definition 

1 SBPT Character PT history solution file header 

2 SBPT_fn Character PT history solution file name (BINARY, for post-processing) 

16th line (A4, 1X, A80): this line is optional; it is needed only when user-specified mechanism is used to compute tracking 
velocity 

Entry Variable/Header Type Definition 

1 USVP Character File header of user-specified mechanism parameters used 
for computing tracking velocity 

2 USVP_fn Character User-specified tracking velocity mechanism parameters file 
name (ASCII) 

17th line (A4, 1X, A80) 

Entry Variable/Header Type Definition 

1 ENDR Character Header to signal the end of super file 

2 TEST.END Character Filename to signal the end of super file 
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< Sample 1 > Use node-based velocity and specify open-boundary nodes in 
a data file. 

2           NEQ 
1  0        ID_VEL, ID_VFILE 
1.0e-5      DN_SAFE 
0           ID_BN 
GEOM test_swirl.2dm 
PTSP   test_swirl.pt2 
OBND   test_swirl.ob2 
VNAS   test_swirl.vn2 
VNBF   forward_swirl.vn2 
VNBB   backward_swirl.vn2 
NEMA   test_swirl.nemc2 
NEMF   forward_swirl.nemc2 
NEMB   backward_swirl.nemc2 
SAPT   test_swirl.out2 
SBPT   test_swirl.out2binary 
ENDR   TEST.END 

 
< Sample 2 > Use element-based velocity and set all boundary nodes to 
open boundary nodes. 
2             NEQ 
1 0           ID_VEL, ID_VFILE 
1.0e-5        DN_SAFE 
1             ID_BN 
GEOM   test_swirl.2dm 
PTSP  test_swirl.pt2 
VEAS   test_swirl.ve2 
VEBF   forward_swirl.ve2 
VEBB   backward_swirl.ve2 
EEMA   test_swirl.eemc2 
EEMF   forward_swirl.eemc2 
EEMB   backward_swirl.eemc2 
SAPT   test_swirl.out2 
SBPT   test_swirl.out2binary 
ENDR   TEST.END 

 

Geometry file 

This file includes the element indices and nodal coordinate information 
associated with the unstructured mesh within which PT is conducted. The 
contents of a geometry file are listed below. 

1st line (A4) 

Entry Variable/Header Type Definition 

1 MESHnD Character Header to indicate that this is a geometry file; 
n =  1 for 1-D, 2 for 2-D, and 3 for 3-D 

Between the 1st and the last line, we may have GE2, GE3, GE4, GE6, or GE8 as headers to present element indices for 
each global element as well as GN to specify nodal coordinates for each global node. For 1- and 2-D tracking, the X- and 
Y-coordinates of global nodes are given, while the Z-coordinate at each node is set to zero by default. If the Z-coordinate is 
to be read with the GN header, a ZZ header must be given in a line before the first line using the GN header.  
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Lines using GE2 as header  (A3,1X, free format): 1-D line element 

Entry Variable/Header Type Definition 

1 GE2 Character GE2 header 

2 M Integer Global element ID 

3 IE(1,M) Integer Global node ID corresponding to the 1st node of the 
element 

4 IE(2,M) Integer Global node ID corresponding to the 2nd node of the 
element 

Lines using GE3 as header  (A3,1X, free format): 2-D triangular element 

Entry Entry Type Definition 

1 GE3 Character GE3 header 

2 M Integer Global element ID 

3 IE(1,M) Integer Global node ID corresponding to the 1st node of the 
element 

4 IE(2,M) Integer Global node ID corresponding to the 2nd node of the 
element 

5 IE(3,M) Integer Global node ID corresponding to the 3rd node of the 
element 

Lines using GE4 as header  (A3,1X, free format): 2-D quadrilateral or 3-D tetrahedral element 

Entry Variable/Header Type Definition 

1 GE4 Character GE4 header 

2 M Integer Global element ID 

3 IE(1,M) Integer Global node ID corresponding to the 1st node of the 
element 

4 IE(2,M) Integer Global node ID corresponding to the 2nd node of the 
element 

5 IE(3,M) Integer Global node ID corresponding to the 3rd node of the 
element 

6 IE(4,M) Integer Global node ID corresponding to the 4th node of the 
element 

Lines using GE6 as header  (A3,1X, free format): 3-D triangular prism element 

Entry Variable/Header Type Definition 

1 GE6 Character GE6 header 

2 M Integer Global element ID 

3 IE(1,M) Integer Global node ID corresponding to the 1st node of the 
element 

4 IE(2,M) Integer Global node ID corresponding to the 2nd node of the 
element 

5 IE(3,M) Integer Global node ID corresponding to the 3rd node of the 
element 

6 IE(4,M) Integer Global node ID corresponding to the 4th node of the 
element 

7 IE(5,M) Integer Global node ID corresponding to the 5th node of the 
element 

8 IE(6,M) Integer Global node ID corresponding to the 6th node of the 
element 

Lines using GE8 as header  (A3,1X, free format): 3-D hexahedral element 

Entry Variable/Header Type Definition 

1 GE8 Character GE8 header 
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2 M Integer Global element ID 

3 IE(1,M) Integer Global node ID corresponding to the 1st node of the 
element 

4 IE(2,M) Integer Global node ID corresponding to the 2nd node of the 
element 

5 IE(3,M) Integer Global node ID corresponding to the 3rd node of the 
element 

6 IE(4,M) Integer Global node ID corresponding to the 4th node of the 
element 

7 IE(5,M) Integer Global node ID corresponding to the 5th node of the 
element 

8 IE(6,M) Integer Global node ID corresponding to the 6th node of the 
element 

9 IE(7,M) Integer Global node ID corresponding to the 7th node of the 
element 

10 IE(8,M) Integer Global node ID corresponding to the 8th node of the 
element 

Line using ZZ as header (A2): Z-coordinate signal  

Entry Variable/Header Type Definition 

1 ZZ Character ZZ header to signal the input of the Z-coordinate of global 
node with the GN header for 1- or 2-D tracking 

Lines using GN as header (A2,1X, free format): coordinates of global nodes 

Entry Variable/Header Type Definition 

1 GN Character GN header 

2 N Integer Global node ID 

3 XG(1,N) Real X-coordinate of the global node 

4 XG(2,N) Real Y-coordinate of the global node  

5 XG(3,N) Real Z-coordinate of the global node  

Last line (A4) 

Entry Variable/Header Type Definition 

1 ENDR Character Header to signal the end of geometry file 

 

< Sample > Mixed 2-D triangular-quadrilateral element mesh. 
MESH2D 
GE4      1          2       3      24      23 
GE4      2          4       5      26      25 
GE4      3          6       7      28      27 
… 
GE3     11          1       2      23 
GE3     12          1      23      22 
GE3     13          3       4      25 
… 
ZZ 
GN      1        0.0000000        0.0000000        2.0000000 
GN      2       10.0000000        0.0000000        3.0000000 
… 
ENDR 
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PT specifics file 

This file specifies data associated with the computation of PT. The con-
tents of a PT specifics file are listed below. 

When Particles Start From Specified Global Node Locations (PTSP is used 
as the header in the PT super file): 

1st line (free format) 

Entry Variable/Header Type Definition 

1 ID_RK Integer RK schemes used for PT computation: 
45 = embedded 4th- and 5--order RK is used; 
1 = 1st-order RK is used (no error estimator applied); 
2 = 2nd-order RK is used (no error estimator applied); 
4 = 4th-order RK is used (no error estimator applied); 

2 ID_EBE Integer Indicator for element-by-element tracking: 
0 = use NEBE tracking 
1 = use EBE tracking 

2nd line (free format) 

Entry Variable/Header Type Definition 

1 NPT Integer Number of particles to be tracked 

3- – (NPT+2)th lines (free format): each line specified a global node ID as the start location of PT 

Entry Variable/Header Type Definition 

1 IDPT(ipt) Integer ID of the global node corresponding to the iptth particle 

(NPT+3)th line (free format) 

Entry Variable/Header Type Definition 

1 IBF Integer -1 = backward PT; 1 = forward PT 

(NPT+4)th line (free format) 

Entry Variable/Header Type Definition 

1 T_START Real Time from which PT starts 

(NPT+5)th line (free format) 

Entry Variable/Header Type Definition 

1 DT_PT Real Time duration for PT  

2 DT_INIT0 Real Initial time step size for PT in an element 

3 ID_DT Integer 0 = use DT_INIT0 as the time step size for the first PT 
computation in each active element; 1 = use the Courant 
number-based time step size (computed) for the first PT 
computation in each active element 

4 CR Real Courant number used to estimate the initial time step size 
when desired 

(NPT+6)th line (free format) 

Entry Variable/Header Type Definition 

1 NT_PT_OUTPUT Integer Number of evenly distributed time intervals during DT_PT 
for storing the locations of tracked particles for output 
purpose.  

(NPT+7)th line (free format) 

Entry Variable/Header Type Definition 
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1 ATOL Real Absolute error tolerance for adaptive time integration 

2 RTOL Real Relative error tolerance for adaptive time integration 

3 SF Real Safety factor used for adaptive time step 

 

< Sample > 2-D PT with 20 particles starting from global nodes. 
45    1                ID_RK, ID_EBE 
20                    NPT 
  1                   IDPT(1) 
 23                   IDPT(2) 
… 
179  IDPT(19) 
200                   IDPT(20) 
1                     IBF 
0.0                   T_START 
16.0  1.0  1  0.5         DT_PT, DT_INIT, ID_DT, CR 
16                    NT_PT_OUTPUT 
1.0e-8 0.0e0 0.9e0    ATOL, RTOL, SF 

When Particles Start From Non-Global Node Locations (PTS2 is used as the 
header in the PT super file): 

1st line (free format) 

Entry Variable/Header Type Definition 

1 ID_RK0 Integer RK schemes used for PT computation 
45 = embedded 4th- and 5th-order RK is used; 
24 = 2nd- and 4th-order RK is used; 
1 = 1st-order RK is used (no error estimator applied); 
2 = 2nd-order RK is used (no error estimator applied); 
4 = 4th-order RK is used (no error estimator applied); 

2 ID_EBE Integer Indicator for element-by-element tracking: 
0 = use NEBE tracking 
1 = use EBE tracking 

2nd line (free format) 

Entry Variable/Header Type Definition 

1 NPT Integer No. of particles to be tracked 

3rd – (NPT+2)th lines (free format): each line specified the start location of a particle  

Entry Variable/Header Type Definition 

1 MPT(ipt) Integer ID of the global element containing the iptth particle before 
PT begins 

2 XPT(1,1,ipt) Real X-coordinate of the iptth particle before PT begins  

3 XPT(1,2,ipt) Real Y-coordinate of the iptth particle before PT begins   

4 XPT(1,3,ipt) Real Z-coordinate of the iptth particle before PT begins (needed 
for 3-D PT) 

(NPT+3)th line (free format) 

Entry Variable/Header Type Definition 

1 IBF Integer -1 = backward PT; 1 = forward PT 

(NPT+4)th line (free format) 
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Entry Variable/Header Type Definition 

1 T_START Real Time from which PT starts 

(NPT+5)th line (free format) 

Entry Variable/Header Type Definition 

1 DT_PT Real Time duration for PT  

2 DT_INIT0 Real Initial time step size for PT in an element 

3 ID_DT Integer 0 = use DT_INIT as the time step size for the first PT 
computation in each active element; 1 = use the Courant 
number-based time step size (computed) for the first PT 
computation in each active element 

4 CR Real Courant number used to estimate the initial time step size 
when desired 

(NPT+6)th line (free format) 

Entry Variable/Header Type Definition 

1 NT_PT_OUTPUT Integer Number of evenly distributed time intervals during DT_PT 
for storing the locations of tracked particles for output 
purpose.  

(NPT+7)th line (free format) 

Entry Variable/Header Type Definition 

1 ATOL Real Absolute error tolerance for adaptive time integration 

2 RTOL Real Relative error tolerance for adaptive time integration 

3 SF Real Safety factor used for adaptive time step 

 

< Sample > 2-D PT with 400 particles using element ID and coordinates to 
define the start locations.  
45                    ID_RK 
400                           NPT 
626 0.649981500 0.752356097   MPT(1), XPT(1,1,1), XPT(1,2,1) 
626 0.649925990 0.754711614   MPT(2), XPT(1,1,2), XPT(1,2,2)  
… 
586 0.649981501 0.747643928   MPT(399), XPT(1,1,399), XPT(1,2,399) 
627 0.650000005 0.750000026   MPT(400), XPT(1,1,400), XPT(1,2,400) 
1                     IBF 
0.0                     T_START 
16.0  1.0  0  1.0             DT_PT, DT_INIT0, ID_DT, CR 
16                      NT_PT_OUTPUT 
1.0e-8 0.0e0 0.9e0      ATOL, RTOL, SF 

Velocity files 

Either ASCII or BINARY velocity files can be read by PT123 for PT com-
putation. When ID_VFILE is set to zero in the super file, an ASCII velocity 
file is used. In this case, a BINARY velocity file used for forward PT will be 
generated and output. If backward PT is desired, i.e., IBF is set to -1 in the 
PT specifics file, a BINARY velocity file used for backward PT will also be 
generated and output. When the BINARY velocity files are available, the 
user can set ID_VFILE to 1 for different PT computation using the same 
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velocity fields, which results in shorter preparation time when compared 
to using the ASCII velocity file. The BINARY velocity file names are 
specified in the super file. The contents of an ASCII velocity file are listed 
below. It is noted that the number of velocity components is equal to the 
number of dimension for tracking. Although both X- and Y-coordinates 
are input in the geometry file for 1-D tracking, this velocity file provides 
only the velocity along the 1-D direction that tracking occurs. For instance, 
in cross section-averaged 1-D channel flow simulation, the velocity is 
computed along the channel coordinate though X- and Y-coordinates are 
given at global nodes. In this case, there is a conversion between the given 
X-Y coordinate system and the channel coordinate system for 
computation. 

When Node-Based Velocity Is Considered: 

1st line (free format) 

Entry Variable/Header Type Definition 

1 NNP Integer No. of global nodes 

2 NEQ Integer 1 = 1-D; 2 = 2-D; 3 = 3-D 

3 NTSTEP Integer No. of time steps at which the nodal velocity is given 

The following (NNP+1) lines will repeat NTSTEP times: Line 1 is the time stamp, and other NNP lines contain the velocity 
information for the NNP global nodes, from the 1st node to the NNPth node  

Line 1 (A2, 2X, F20.10) 

Entry Variable/Header Type Definition 

1 TS Character Time stamp header 

2 RTIME Real Time at which nodal velocity information is provided 

Each line from Lines 2 through (NNP+1) specifies the velocity information (free format),  
e.g., Line N+1 specifies the velocity at Node N. 
The number of entries (velocity components) is equal to the number of dimension for tracking.  

Entry Variable/Header Type Definition 

1 VG(1,N) Real 1-D or X-velocity component at Node N (for 1-D/2-D/3-D) 

2 VG(2,N) Real Y-velocity component at Node N (only for 2-D/3-D) 

3 VG(3,N) Real Z-velocity component at Node N (only for 3-D) 

Last line (A4) 

Entry Variable/Header Type Definition 

1 ENDR Character Header to signal the end of velocity file 
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< Sample > 3-D node-based velocity. 
9261 3 7    No. Global Nodes, No. Dimensions, No. Time Steps 
TS           0.0000000 
      5.0000000       -5.0000000        0.3000000 
      5.0000000       -4.5000000        0.3000000 
… 
TS         200.0000000 
      3.0000000       -3.0000000        0.2000000 
      3.0000000       -2.7000000        0.2000000 
… 
TS         400.0000000 
      1.0000000       -1.0000000        0.1000000 
      1.0000000       -0.9000000        0.1000000 
… 
TS         600.0000000 
      0.0000000        0.0000000        0.0000000 
      0.0000000        0.0000000        0.0000000 
… 
TS         800.0000000 
     -1.0000000        1.0000000       -0.1000000 
     -1.0000000        0.9000000       -0.1000000 
… 
TS        1000.0000000 
     -3.0000000        3.0000000       -0.2000000 
     -3.0000000        2.7000000       -0.2000000 
… 
TS        1200.0000000 
     -5.0000000        5.0000000       -0.3000000 
     -5.0000000        4.5000000       -0.3000000 
… 
ENDR 

When Element-Based Velocity Is Considered: 

1st line (free format) 

Entry Variable/Header Type Definition 

1 NEL Integer No. of global elements 

2 NEQ Integer 1 = 1-D; 2 = 2-D; 3 = 3-D 

3 NTSTEP Integer No. of time steps at which the nodal velocity is given 

The following (NEL+1) lines will repeat NTSTEP times: Line 1 is the time stamp, and other NEL lines contain the velocity 
information for the NEL global elements, from the 1st element to the NELth element  

Line 1 (A2, 2X, F20.10) 

Entry Variable/Header Type Definition 

1 TS Character Time stamp header 

2 RTIME Real Time at which nodal velocity information is provided 

Each line from Lines 2 through (NEL+1) specifies the velocity information (free format), 
e.g., Line M+1 specifies the velocities of nodes associated with Element M;  
Each line contains up to N3 entries (velocity components), where N3 = NEQ*NODE and NEQ and NODE are the number 
of dimension for tracking and the number of nodes for Element M, respectively. 

Entry Variable/Header Type Definition 

1 VE(1,1,M) Real 1-D or X-velocity component at the 1st node of Element M 
(for 1-D/2-D/3-D) 
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2 VE(2,1,M) Real Y-velocity component at the 1st node of Element M (only 
for 2-D/3-D) 

3 VE(3,1,M) Real Z-velocity component at the 1st node of Element M (only 
for 3-D) 

…    

N3-2 VE(1,NODE,M) Real 1-D or X-velocity component at the NODEth node of 
Element M (for 1-D/2-D/3-D) 

N3-1 VE(2,NODE,M) Real Y-velocity component at the NODEth node of Element M 
(for 1-D/2-D/3-D) 

N3 VE(3,NODE,M) Real Z-velocity component at the NODEth node of Element M 
(only for 3-D) 

Last line (A4) 

Entry Variable/Header Type Definition 

1 ENDR Character Header to signal the end of velocity file 

 

< Sample > 3-D element-based velocity. 
48000 3 7       NEL, NEQ, NTSTEP 
TS           0.0000000 
      5.0 -5.0 0.3  5.0 -4.5 0.3  4.5 -5.0 0.3  5.0 -5.0 0.3 
      5.0 -4.5 0.3  4.5 -5.0 0.3  5.0 -5.0 0.3  5.0 -4.5 0.3 
… 
TS         200.0000000 
      3.0 -3.0 0.2  3.0 -2.7 0.2  2.7 -3.0 0.2  3.0 -3.0 0.2 
      3.0 -2.7 0.2  2.7 -3.0 0.2  3.0 -3.0 0.2  3.0 -2.7 0.2  
… 
TS         400.0000000 
      1.0 -1.0 0.1  1.0 -0.9 0.1  0.9 -1.0 0.1  1.0 -1.0 0.1 
      1.0 -0.9 0.1  0.9 -1.0 0.1  1.0 -1.0 0.1  1.0 -0.9 0.1  
… 
TS         600.0000000 
      0.0 0.0 0.0  0.0 0.0 0.0  0.0 0.0 0.0  0.0 0.0 0.0  
      0.0 0.0 0.0  0.0 0.0 0.0  0.0 0.0 0.0  0.0 0.0 0.0  
… 
TS         800.0000000 
      -1.0 1.0 -0.1  -1.0 0.9 -0.1  -0.9 1.0 -0.1  -1.0 1.0 -0.1 
      -1.0 0.9 -0.1  -0.9 1.0 -0.1  -1.0 1.0 -0.1  -1.0 0.9 -0.1  
… 
TS        1000.0000000 
      -3.0 3.0 -0.2  -3.0 2.7 -0.2  -2.7 3.0 -0.2  -3.0 3.0 -0.2 
      -3.0 2.7 -0.2  -2.7 3.0 -0.2  -3.0 3.0 -0.2  -3.0 2.7 -0.2 
… 
TS        1200.0000000 
      -5.0 5.0 -0.3  -5.0 4.5 -0.3  -4.5 5.0 -0.3  -5.0 5.0 -0.3 
      -5.0 4.5 -0.3  -4.5 5.0 -0.3  -5.0 5.0 -0.3  -5.0 4.5 -0.3 
… 
ENDR 

Velocity conversion factor files 

As mentioned previously, either ASCII or BINARY velocity files can be 
read for PT computation. In PT123, the tracking velocity is defined to be 
equal to the given velocity, i.e., velocity read from the velocity file, divided 
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by the velocity conversion factor. In the porous media, for example, the 
tracking velocity is the pore velocity that is equal to the Darcy velocity 
divided by the effective moisture content. In this case, the given velocity is 
the Darcy velocity, and the effective moisture content is the velocity con-
version factor. ID_VFILE is used to control the file type as explained 
previously for the velocity file. The time steps in the velocity conversion 
factor file must match those in the velocity file. The contents of an ASCII 
velocity conversion factor file are listed below. 

When Node-Based Velocity Is Used: each global node is assigned a conver-
sion factor at each time step. 

1st line (free format) 

Entry Variable/Header Type Definition 

1 NNP Integer No. of global nodes 

2 NTSTEP Integer No. of time steps at which velocity conversion factor is 
given 

The following (NNP+1) lines will repeat NTSTEP times: Line 1 is the time stamp, and other NNP lines contain the velocity 
conversion factor information for the NNP global nodes, from the 1st node to the NNPth node  

Line 1 (A2, 2X, F20.10) 

Entry Variable/Header Type Definition 

1 TS Character Time stamp header 

2 RTIME Real Time at which velocity conversion factor information is 
provided 

Each line from Lines 2 through (NNP+1) specifies the velocity conversion factor information (free format), e.g., Line N+1 
specifies the velocity conversion factor at Node N 

Entry Variable/Header Type Definition 

1 EMC(N) Real Velocity conversion factor at Node N 

Last line (A4) 

Entry Variable/Header Type Definition 

1 ENDR Character Header to signal the end of velocity conversion factor file 
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< Sample > 2-D node-based velocity conversion factor. 
441 33          NNP, NTSTEP 
TS           0.0000000 
      1.0000000 
      1.0000000 
… 
TS           0.5000000 
      1.0000000 
      1.0000000 
… 
TS           1.0000000 
      1.0000000 
      1.0000000 
… 
TS           1.5000000 
      1.0000000 
      1.0000000 
… 
TS           2.0000000 
      1.0000000 
      1.0000000 
… 
ENDR 

When Element-Based Velocity Is Used: a conversion factor is assigned to 
each element at each time step. 

1st line (free format) 

Entry Variable/Header Type Definition 

1 NEL Integer No. of global elements 

2 NTSTEP Integer No. of time steps at which velocity conversion factor is 
given 

The following (NEL+1) lines will repeat NTSTEP times: Line 1 is the time stamp, and other NEL lines contain the velocity 
conversion factor information for the NEL global elements, from the 1st element to the NELth element  

Line 1 (A2, 2X, F20.10) 

Entry Variable/Header Type Definition 

1 TS Character Time stamp header 

2 RTIME Real Time at which velocity conversion factor information is 
provided 

Each line from Lines 2 through (NEL+1) specifies the velocity conversion factor information (free format), e.g., Line M+1 
specifies the velocity conversion factor at Element M 

Entry Variable/Header Type Definition 

1 EMC(MN) Real Velocity conversion factor at Element M 

Last line (A4) 

Entry Variable/Header Type Definition 

1 ENDR Character Header to signal the end of effective moisture content file 
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< Sample > 2-D element-based velocity conversion factor. 
800 33          NEL, NTSTEP 
TS           0.0000000 
      1.0000000 
      1.0000000 
… 
TS           0.5000000 
      1.0000000 
      1.0000000 
… 
TS           1.0000000 
      1.0000000 
      1.0000000 
… 
TS           1.5000000 
      1.0000000 
      1.0000000 
… 
ENDR 

Open-boundary file  

This file identifies the 2-D or 3-D nodes that are associated with open 
boundary, i.e., through which the particle may enter or exit the domain of 
interest. The contents of an open-boundary file are listed below. 

Lines using OBN as header  (A3,1X, free format): open boundary node 

Entry Variable/Header Type Definition 

1 OBN Character OBN header 

2 NPOB Integer Global node ID corresponding to the open-boundary node 
being input 

Last line (A4) 

Entry Variable/Header Type Definition 

1 ENDR Character Header to signal the end of geometry file 

 

< Sample > 2-D open-boundary nodes. 
OB2  1   
… 
ENDR 
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Appendix C: Output Files of PT123 

The output files generated by PT123 are described in this appendix. These 
files include:  

1. BINARY solution file 
2. ASCII solution file 
3. BINARY velocity file 
4. BINARY velocity conversion factor file 

BINARY solution file 

The BINARY solution file of PT123 is specified in the super file using the 
SBPT header. It can be used for post-processing. For example, a utility 
code (pp_pt_pv.f) has been developed to read the BINARY solution file 
and create vtk files at specified time steps, such that the tracking result can 
be visualized in ParaView (http://www.paraview.org/). The following lists the 
Fortran statements used to write particle trajectory information into the 
BINARY solution file. 

WRITE(LU_OB)NPT,NEQ 
DO IPT=1,NPT 
  WRITE(LU_OB)NPATH(IPT) 
  WRITE(LU_OB)(TPT(K,IPT),K=1,NPATH(IPT)) 
  WRITE(LU_OB)((XPT(K,I,IPT),K=1,NPATH(IPT)),I=1,3) 
ENDDO  

where: 

 LU_OB = disk unit of the BINARY solution file 
 NPT = number of particles 
 NEQ = number of dimension (1 for 1-D, 2 for 2-D, 3 for 3-D) 
 IPT = id of the particle being considered 
NPATH(IPT)= number of particle locations used to describe the trajectory 

of the IPT-th particle 
 TPT(K,IPT) = time stamp associated with the K-th location of the IPT-th 

particle 
XPT(K,I,IPT)= the I-th coordinate associated with the K-th location of the 

IPT-th particle. 
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Arrays NPATH, TPT, and XPT are what we called trajectory arrays in 
PT123. 

ASCII solution file 

The ASCII solution file of PT123 is specified in the super file using the 
ABPT header. It can be used for the user to examine the tracking result. It 
lists the tracking history (i.e., time and location) of each particle. It also 
provides information of the total number of tracking steps. 

BINARY velocity file 

The BINARY velocity file of PT123 is specified in the super file using the 
VNBF, VNBB, VEBF, and VEBB header. The VNBF header is used to 
create a BINARY velocity file for node-based forward tracking. Likewise, 
VNBB is for node-based backward tracking, VEBF is for element-based 
forward tracking, and VEBB is for element-based backward tracking. The 
BINARY_PREPARE subroutine (listed below) in PT123 is used to create 
these BINARY velocity files. The BINARY velocity files are read by PT123 
during the tracking computation when a non-steady velocity field is 
considered. They can be used for the next PT computation as long as the 
same velocity field is used. They can also be used for post-processing 
purposes. 

BINARY velocity conversion factor file 

The BINARY velocity conversion factor file of PT123 is specified in the 
super file using the NEMF, NEMB, EEMF, and EEMB header. The NEMF 
header is used to create a BINARY velocity conversion factor file for node-
based forward tracking. Likewise, NEMB is for node-based backward 
tracking, EEMF is for element-based forward tracking, and EEMB is for 
element-based backward tracking. Like the BINARY velocity files, the 
BINARY velocity conversion factor files are created in the subroutine of 
BINARY_PREPARE in PT123. 

 

 

 



ERDC TR-11-10 79 

 

Subroutine BINARY_PREPARE 

SUBROUTINE BINARY_PREPARE 
     I    (MAXNP,MAXEL,MAXEQ,MAXND, 
     I     NNP,NEL,NEQ, IBF,IDVE, MNODE, 
     I     LU_A,LU_F,LU_B,  LU_EMCA,LU_EMCF,LU_EMCB, 
     M     VT1N,VT1E,EMC1N,EMC1E) 
C  
C 03/16/2011 (HPC) 
C ====================================================================== 
C < Purpose >   
C   Generate the binary file to store velocity and velocity conversion 
C   factor based on the given ascii files  
C < Input > 
C   IDVE = Indication of data type 
C          1 ==> NODE-BASED  
C          2 ==> ELEMENT-BASED 
C   IBF = Indication of tracking type 
C         1 = backward 
C         2 = forward 
C < Working Arrays > 
C   VT1N = Node-based velocity 
C   VT1E = Element-based velocity 
C   EMC1N = Node-based velocity conversion factor 
C   EMC1E = Element-based velocity conversion factor      
C ====================================================================== 
C 
      IMPLICIT REAL*8(A-H,O-Z) 
C 
      CHARACTER IC1*2 
C 
      DIMENSION VT1N(MAXEQ,MAXNP),VT1E(MAXEQ,MAXND,MAXEL) 
      DIMENSION EMC1N(MAXNP),EMC1E(MAXEL) 
      DIMENSION MNODE(MAXEL) 
C 
C 
C CASE 1: NODE-BASED  
C 
      IF(IDVE.EQ.1)THEN 
C 
        READ(LU_A,*)NNP1,NEQ1,NTSTEP1 
        IF(NNP1.NE.NNP .OR. NEQ1.NE.NEQ)THEN 
          WRITE(*,*)'ERROR IN READING VELOCITY: (NNP1 .NE. NNP) ', 
     >              'OR (NEQ1 .NE. NEQ)' 
          WRITE(*,*)'NNP1, NEQ1 =',NNP1, NEQ1 
          WRITE(*,*)'NNP, NEQ =',NNP,NEQ 
          STOP 
        ENDIF 
        READ(LU_EMCA,*)NNP2,NTSTEP2 
        IF(NNP2.NE.NNP1 .OR. NTSTEP2.NE.NTSTEP1)THEN 
          WRITE(*,*)'ERROR IN READING MOISTURE CONTENT: ', 
     >              '(NNP2 .NE. NNP1) ', 
     >              'OR (NTSTEP2 .NE. NTSTEP1)' 
          WRITE(*,*)'NNP2, NTSTEP2 =',NNP2, NTSTEP2 
          WRITE(*,*)'NNP1, NTSTEP1 =',NNP1, NTSTEP1 
          STOP 
        ENDIF 
C 
C === GENERATE BINARY FILES FOR FORWARD PT 
C 
        WRITE(LU_F)NNP,NEQ 
        WRITE(LU_EMCF)NNP 
        DO NS=1,NTSTEP1 
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          READ(LU_A,1005)IC1,RTIME 
          WRITE(LU_F)NS,RTIME 
 1005     FORMAT(A2,2X,F20.10) 
          READ(LU_EMCA,1005)IC1,RRTIME 
          WRITE(LU_EMCF)NS,RTIME 
C 
          IF(DABS(RTIME-RRTIME).GT.1.0E-10)THEN 
            WRITE(*,*)'WARNING!' 
            WRITE(*,*)'UNMATCHED TIME STAMPS IN VELOCITY AND ', 
     >                'EFFECTIVE MOISTURE CONTENT FILES' 
            WRITE(*,*)'CHECK AND CORRECT THE DATA FILES BEFORE RERUN.' 
            STOP 
          ENDIF 
C 
          DO NP=1,NNP 
            READ(LU_A,*)(VT1N(I,NP),I=1,NEQ)  
            READ(LU_EMCA,*)EMC1N(NP)  
          ENDDO 
          WRITE(LU_F)((VT1N(I,NP),I=1,NEQ),NP=1,NNP) 
          WRITE(LU_EMCF)(EMC1N(NP),NP=1,NNP) 
        ENDDO 
        REWIND(LU_F) 
        REWIND(LU_EMCF) 
C 
C === GENERATE BINARY FILES FOR BACKWARD PT 
C < NOTE > THE VELOCITY STORED IN THE BINARY FILE FOR BACKWARD PT 
C          IS EQUAL TO THE NEGATIVE VALUE OF VELOCITY USED FOR 
C          FORWARD PT 
C 
        IF(IBF.EQ.-1)THEN 
          READ(LU_F)NNP,NEQ 
          WRITE(LU_B)NNP,NEQ 
          READ(LU_EMCF)NNP 
          WRITE(LU_EMCB)NNP 
          DO 150 NS=NTSTEP1,1,-1 
            DO NSS=1,NTSTEP1 
              READ(LU_F)NNS,RTIME 
              READ(LU_F)((VT1N(I,NP),I=1,NEQ),NP=1,NNP) 
              READ(LU_EMCF)NNSS,RRTIME 
              READ(LU_EMCF)(EMC1N(NP),NP=1,NNP) 
C 
              IF(NSS.EQ.NS)THEN 
                NN=NTSTEP1+1-NS 
C 
                WRITE(LU_B)NN,RTIME 
                WRITE(LU_B)((-VT1N(I,NP),I=1,NEQ),NP=1,NNP) 
                REWIND(LU_F) 
                READ(LU_F)NNP,NEQ 
C 
                WRITE(LU_EMCB)NN,RTIME 
                WRITE(LU_EMCB)(EMC1N(NP),NP=1,NNP) 
                REWIND(LU_EMCF) 
                READ(LU_EMCF)NNP 
C 
                GOTO 150 
              ENDIF 
            ENDDO 
  150     CONTINUE 
        ENDIF 
        REWIND(LU_F) 
        REWIND(LU_B) 
        REWIND(LU_EMCF) 
        REWIND(LU_EMCB) 
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C 
C CASE 2: ELEMENT-BASED 
C 
      ELSE       
C 
        READ(LU_A,*)NEL1,NEQ1,NTSTEP1 
        IF(NEL1.NE.NEL .OR. NEQ1.NE.NEQ)THEN 
          WRITE(*,*)'ERROR IN READING VELOCITY: (NEL1 .NE. NEL) ', 
     >              'OR (NEQ1 .NE. NEQ)' 
          WRITE(*,*)'NEL1, NEQ1 =',NEL1, NEQ1 
          WRITE(*,*)'NEL, NEQ =',NEL,NEQ 
          STOP 
        ENDIF 
        READ(LU_EMCA,*)NEL2,NTSTEP2 
        IF(NEL2.NE.NEL1 .OR. NTSTEP2.NE.NTSTEP1)THEN 
          WRITE(*,*)'ERROR IN READING MOISTURE CONTENT: ', 
     >              '(NEL2 .NE. NEL1) ', 
     >              'OR (NTSTEP2 .NE. NTSTEP1)' 
          WRITE(*,*)'NEL2, NTSTEP2 =',NEL2, NTSTEP2 
          WRITE(*,*)'NEL1, NTSTEP1 =',NEL1, NTSTEP1 
          STOP 
        ENDIF 
C 
C === GENERATE BINARY FILES FOR FORWARD PT 
C 
        WRITE(LU_F)NEL,NEQ 
        WRITE(LU_EMCF)NEL 
        DO NS=1,NTSTEP1 
          READ(LU_A,1005)IC1,RTIME 
          READ(LU_EMCA,1005)IC1,RTIME 
          WRITE(LU_F)NS,RTIME 
          WRITE(LU_EMCF)NS,RTIME 
          DO M=1,NEL 
            NNODE=MNODE(M) 
            READ(LU_A,*)((VT1E(I,J,M),I=1,NEQ),J=1,NNODE) 
            READ(LU_EMCA,*)EMC1E(M)   
          ENDDO 
          WRITE(LU_F)(MNODE(M),((VT1E(I,J,M),I=1,NEQ),J=1,MNODE(M)), 
     >                M=1,NEL) 
          WRITE(LU_EMCF)(EMC1E(M),M=1,NEL) 
        ENDDO 
        REWIND(LU_F) 
        REWIND(LU_EMCF) 
C 
C === GENERATE BINARY FILES FOR BACKWARD PT 
C < NOTE > THE VELOCITY STORED IN THE BINARY FILE FOR BACKWARD PT 
C          IS EQUAL TO THE NEGATIVE VALUE OF VELOCITY USED FOR 
C          FORWARD PT 
C 
        IF(IBF.EQ.-1)THEN 
          READ(LU_F)NEL,NEQ 
          WRITE(LU_B)NEL,NEQ 
          READ(LU_EMCF)NEL 
          WRITE(LU_EMCB)NEL 
          DO 250 NS=NTSTEP1,1,-1 
            DO NSS=1,NTSTEP1 
              READ(LU_F)NNS,RTIME 
              READ(LU_F)(MNODE(M),((VT1E(I,J,M),I=1,NEQ), 
     >                   J=1,MNODE(M)),M=1,NEL) 
              READ(LU_EMCF)NNS,RTIME 
              READ(LU_EMCF)(EMC1E(M),M=1,NEL) 
              IF(NSS.EQ.NS)THEN 
                NN=NTSTEP1+1-NS 
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C 
                WRITE(LU_B)NN,RTIME 
                WRITE(LU_B)(MNODE(M),((-VT1E(I,J,M),I=1,NEQ), 
     >                      J=1,MNODE(M)),M=1,NEL) 
                REWIND(LU_F) 
                READ(LU_F)NEL,NEQ 
C 
                WRITE(LU_EMCB)NN,RTIME 
                WRITE(LU_EMCB)(EMC1E(M),M=1,NEL) 
                REWIND(LU_EMCF) 
                READ(LU_EMCF)NEL 
C 
                GOTO 250 
              ENDIF 
            ENDDO 
  250     CONTINUE 
        ENDIF 
        REWIND(LU_F) 
        REWIND(LU_B) 
        REWIND(LU_EMCF) 
        REWIND(LU_EMCB) 
C 
      ENDIF 
C 
  999 CONTINUE 
      RETURN 
      END 
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